Interspinous and Interlaminar Stabilization/ Distraction Devices (Spacers)

Title: Interspinous and Interlaminar Stabilization / Distraction Devices (Spacers)

Professional
Original Effective Date: October 18, 2004
Revision Date(s): September 7, 2005; February 21, 2006; May 6, 2006; July 27, 2006; September 14, 2006; October 31, 2006; January 1, 2007; November 18, 2009; February 8, 2010; June 27, 2011; February 24, 2012; March 19, 2013; January 23, 2015; July 21, 2015
Current Effective Date: January 23, 2015

Institutional
Original Effective Date: July 1, 2005
Revision Date(s): September 7, 2005; February 21, 2006; May 6, 2006; July 27, 2006; September 14, 2006; October 31, 2006; January 1, 2007; November 18, 2009; February 8, 2010; June 27, 2011; February 24, 2012; March 19, 2013; January 23, 2015; July 21, 2015
Current Effective Date: January 23, 2015

State and Federal mandates and health plan member contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. To verify a member’s benefits, contact Blue Cross and Blue Shield of Kansas Customer Service.

The BCBSKS Medical Policies contained herein are for informational purposes and apply only to members who have health insurance through BCBSKS or who are covered by a self-insured group plan administered by BCBSKS. Medical Policy for FEP members is subject to FEP medical policy which may differ from BCBSKS Medical Policy.

The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents of Blue Cross and Blue Shield of Kansas and are solely responsible for diagnosis, treatment and medical advice.

If your patient is covered under a different Blue Cross and Blue Shield plan, please refer to the Medical Policies of that plan.

DESCRIPTION
Interspinous spacers are small devices implanted between the vertebral spinous processes. After implantation, the device is opened or expanded to distract (open) the neural foramen and decompress the nerves. Interlaminar spacers are implanted midline
between adjacent lamina and spinous processes to provide dynamic stabilization following decompressive surgery.

Background

Interspinous spacers are devices implanted between vertebral spinous processes. Interlaminar spacers are implanted between adjacent lamina and have 2 sets of wings that are placed around the inferior and superior spinous processes. These implants aim to restrict painful motion while otherwise enabling normal motion. The devices (spacers) distract the laminar space and/or spinous processes and restrict extension. This procedure theoretically enlarges the neural foramen and decompresses the cauda equina in patients with spinal stenosis and neurogenic claudication. Other types of dynamic posterior stabilization devices are pedicle screw/rod-based devices and total facet replacement systems; these are not covered in this policy.

One type of interspinous implant is inserted between the spinous processes through a small (4–8 cm) incision and acts as a spacer between the spinous processes, maintaining the flexion of that spinal interspace. The supraspinous ligament is maintained and assists in holding the implant in place. The surgery does not include any laminotomy, laminectomy, or foraminotomy at the time of insertion, thus reducing the risk of epidural scarring and cerebrospinal fluid leakage. Other interspinous spacers require removal of the interspinous ligament and are secured around the upper and lower spinous processes. Interlaminar implants are inserted between the adjacent lamina and spinous processes following decompressive surgery.

Regulatory Status

In November 2005, the X-STOP® Interspinous Process Decompression (IPD®) System (Kyphon-now part of Medtronic Spine LLC) was approved by the U.S. Food and Drug Administration (FDA) for “treatment of patients aged 50 or older suffering from neurogenic intermittent claudication secondary to a confirmed diagnosis of lumbar spinal stenosis.” It is approved for patients with moderately impaired physical function who have had a regimen of at least 6 months of nonoperative treatment and who have relief of their pain when in flexion. The device is approved for implantation at 1 or 2 lumbar levels in patients whose condition warrants surgery at no more than 2 levels. The X-STOP PEEK (polyetheretherketone) received approval in 2006 and is a modified version of the X-STOP that includes a PEEK spacer and additional 16-mm spacer size. The indications are the same as for the X-STOP titanium model.

The FDA lists the following contraindications to use of the X-STOP:
- an allergy to titanium or titanium alloy
- spinal anatomy or disease that would prevent implantation of the device or cause the device to be unstable in situ, such as:
 - significant instability of the lumbar spine, e.g., isthmic spondylolisthesis or degenerative spondylolisthesis greater than grade 1.0 (on a scale of 1 to 4)
 - an ankylosed segment at the affected level(s)
- acute fracture of the spinous process or pars interarticularis
- significant scoliosis (Cobb angle greater than 25 degrees)
- cauda equina syndrome defined as neural compression causing neurogenic bowel or bladder dysfunction
- diagnosis of severe osteoporosis, defined as bone mineral density (from DEXA scan [dual energy x-ray absorptiometry] or some comparable study) in the spine or hip that is more than 2.5 [standard deviations] SD below the mean of adult normals in the presence of 1 or more fragility fractures
- active systemic infection or infection localized to the site of implantation

The coflex® Interlaminar Technology implant (Paradigm Spine) was approved by the FDA in 2012 (P110008). It is a single-piece U-shaped titanium alloy dynamic stabilization device with pairs of wings that surround the superior and inferior spinous processes. This device was previously called the Interspinous U.

The coflex® is indicated for use in 1- or 2-level lumbar stenosis from L1-L5 in skeletally mature patients with at least moderate impairment in function, who experience relief in flexion from their symptoms of leg/buttocks/groin pain, with or without back pain, and who have undergone at least 6 months of nonoperative treatment. The coflex® is intended to be implanted midline between adjacent lamina of 1 or 2 contiguous lumbar motion segments. Interlaminar stabilization is performed after decompression of stenosis at the affected level(s).

The FDA lists the following contraindications to use of the coflex®:
- Prior fusion or decompressive laminectomy at any index lumbar level
- Radiographically compromised vertebral bodies at any lumbar level(s) caused by current or past trauma or tumor (e.g., compression fracture)
- Severe facet hypertrophy that requires extensive bone removal which would cause instability
- Grade II or greater spondylolisthesis
- Isthmic spondylolisthesis or spondyloysis (pars fracture)
- Degenerative lumbar scoliosis (Cobb angle >250 degrees)
- Osteoporosis
- Back or leg pain of unknown etiology
- Axial back pain only, with no leg, buttock, or groin pain
- Morbid obesity defined as a body mass index >40
- Active or chronic infection - systemic or local
- Known allergy to titanium alloys or magnetic resonance imaging (MRI) contrast agents
- Cauda equina syndrome defined as neural compression causing neurogenic bowel or bladder dysfunction
The FDA labeling also contains multiple precautions and the following warnings: Coflex® Interlaminar Technology should only be used by surgeons who are experienced and have undergone hands-on training in the use of this device. Only surgeons who are familiar with the implant components, instruments, procedure, clinical applications, biomechanics, adverse events, and risks associated with the coflex® Interlaminar Technology should use this device. A lack of adequate experience and/or training may lead to a higher incidence of adverse events.

Data has demonstrated that spinous process fractures can occur with coflex® implantation. Potential predictors for spinous process fractures include:

- Over-decompression during surgery leading to instability in the spine
- Resection of the spinous process to ≤14 mm
- Height of the spinous process ≤23 mm pre-operatively
- Osteopenia or osteoporosis, and
- "Kissing" spinous processes

If a spinous process fracture occurs during the surgical procedure, the surgeon should assess if sufficient bone stock exists for coflex® implantation.

Continued FDA approval of the coflex® is contingent on annual reports of 2 post-approval studies to provide longer-term device performance and device performance under general conditions of use. One study will provide 5-year follow-up of the cohort in the pivotal investigational device exemption trial. The second will be a multi-center trial with 230 patients with follow-up at 5 years that compares decompression alone versus decompression plus coflex®.

The Wallis System (originally from Abbott Spine; currently from Zimmer Spine) was introduced in Europe in 1986. The first generation Wallis implant was a titanium block; the second generation device is composed of a plastic-like polymer that is inserted between adjacent processes and held in place with a flat cord that is wrapped around the upper and lower spinous processes. The Wallis System is currently being tested in a FDA-regulated clinical trial. Also in a FDA-regulated clinical trial is the DIAM Spinal Stabilization System (Medtronic Sofamor Danek), which is a soft interspinous spacer with a silicone core. The DIAM system requires removal of the interspinous ligament and is secured with laces around the upper and lower spinous processes. Other clinical trials underway at U.S. centers are studying the In-Space (Synthes), Superion® (Vertiflex), and FLEXUS™ (Globus Medical) devices; the comparator in these trials is the X-STOP device.

In February 2015, the Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee of FDA recommended approval for the Superion® Interspinous Spacer device sponsored by VertiFlex. The proposed indication for use for the Superion Interspinous Spacer device, as stated in the premarket approval, is for treating skeletally mature patients suffering from pain, numbness, and/or cramping of
the legs secondary to a diagnosis of moderate lumbar spinal stenosis (Docket No. FDA-2015-N-0001; February 20, 2015).

ExtendSure and CoRoent (both from NuVasive) were launched in Europe in 2005 and 2006. The NL-Prow™ (Non-Linear Technologies), Aperius® (Medtronic Spine) and Falena® (Mikai) devices are in trials in Europe.

POLICY

A. Interspinous distraction devices are considered experimental / investigational as a treatment of neurogenic intermittent claudication.

B. Use of an interlaminar stabilization device following decompressive surgery is considered experimental / investigational.

RATIONALE

The most recent literature review was performed through March 11, 2015. The literature on this technology is dominated by reports from non-U.S. centers on devices that have not received U.S. Food and Drug Administration (FDA) approval, though a number of them are in trials at U.S. centers. As of April 2014, only the X-STOP and Coflex devices have FDA approval for use in the U.S., and this policy does not address other devices. Following is a summary of the key literature to date.

Interspinous Distraction Devices

Systematic Reviews

Two recent systematic reviews compared use of interspinous distraction devices versus traditional decompressive surgery for lumbar spinal stenosis (LSS). In 2014, Wu et al conducted a meta-analysis of 2 randomized controlled trials (RCTs) and 3 nonrandomized prospective comparative studies. There were 204 patients in the interspinous spacer group and 217 patients in the decompressive surgery group. The interspinous spacers that were studied were the X-STOP, Aperius, coflex, DIAM, and distraXion. Pooled analysis showed no significant difference between the spacer and decompression groups for low back pain, leg pain, Oswestry Disability Index (ODI), Roland-Morris Disability Questionnaire (RMDQ), or complications. However, the traditional decompressive surgery group had a significantly lower incidence of reoperation, with 11 of 160 cases requiring reoperation compared with 31 of 161 cases in the interspinous spacer group (relative risk, 3.34; 95% confidence interval [CI], 1.77 to 6.31).

A 2015 meta-analysis by Hong et al included 20 studies with 3155 patients in the interspinous spacers group and 50,983 patients treated with open decompression. Devices studied were the X-STOP, DIAM, Aperius, coflex, Wallis, and SPIRE. Results of this meta-analysis were similar to those obtained in the more selective analysis by Wu. There was no significant difference between the 2 types of procedures for improvement rate, ODI, or visual analog scale (VAS) for back or leg pain. Although postoperative complication rate, perioperative blood loss, hospitalization time, and operation time were lower/shorter in the interspinous spacer group, the reoperation rate was higher (16.5% vs 8.7%).
Randomized Controlled Trials

X-STOP Versus Nonsurgical Therapy

Multiple reports have been published from a single prospective randomized trial, conducted for FDA approval, which compared the X-STOP device to medical therapy. This study randomized 191 patients from 9 clinical centers in the U.S. to implantation of the X-STOP device or medical therapy. Inclusion criteria were neurogenic intermittent claudication caused by lumbar spinal stenosis, age at least 50 years or older, and able to walk at least 50 feet. The primary outcome measure was the ZCQ, which consists of a physical function domain, a symptom severity domain, and a patient satisfaction domain. Outcomes were assessed at 6 weeks, 6 months, 1 year and 2 years. Using the entire study population of 191 patients in this multicenter trial, Zucherman et al reported an improvement of 45% over the mean baseline Symptom Severity Score in the treated patients at 2 years compared with 7% improvement in the control group, which had medical (nonoperative) therapy including epidural injection.(3) In a separate paper, Anderson et al, reporting on a subset of 75 randomized patients who had spondylolisthesis (of total 191 patients with 1- or 2-level lumbar spinal stenosis), found a success rate of 63% in treated patients compared with 13% in controls.(4) Four-year follow-up was reported for 18 of the treated patients in the study.(5) Hsu et al reported quality-of-life data (SF-36) from the same trial.(6) The patients, who had to meet a number of inclusion/exclusion criteria, were assessed at baseline and at 6 weeks, 6 months, 1 year, and 2 years following the initial treatment. The X-STOP group showed improvements (by singlefactor ANOVA or t-test) in both physical and mental component scores compared with both baseline and control subjects. There was a large loss to follow-up (42%) in the medical-treatment group; 6% of the experimental and 26% of the control subjects underwent laminectomy.

Puzzilli et al reported a multicenter controlled trial of X-STOP versus nonsurgical management in 2014.(7) A total of 542 patients with LSS and intermittent claudication relieved on flexion were enrolled. All patients had failed a 6-month trial of conservative therapy (medical and/or physical). Initially patients were randomized, but randomization to conservative management was terminated after the first 120 patients due to poor outcomes. These patients were followed for a minimum of 3 years. By 3 years, the overall failure rate was 12.3% of X-STOP patients compared with 50% of patients with continued nonsurgical management.

X-STOP Versus Decompression

Two randomized trials have compared implantation with X-STOP versus decompression. A randomized noninferiority trial of the X-STOP compared with decompressive surgery was published by Stromqvist et al in 2013.(8) One hundred patients with symptomatic 1- or 2-level lumbar spinal stenosis and neurogenic claudication relieved on flexion were included in the study. Blinding of patients and evaluators was not described. There was a decrease in surgical time (62 vs 98 minutes) and blood loss (54 vs 262) with insertion of the X-STOP, although statistical analysis was not reported. Both intention-to-treat analysis and as-treated analysis at 6, 12, and 24 months found no significant differences between the groups on the patient-reported ZCQ, VAS for leg and back pain, or SF-36. Thirteen patients (26%) in the X-STOP group had additional surgery (typically decompression) compared with 3 patients (6%) in the decompression group, and there was 1 spinous process fracture. The X-STOP patients who later underwent decompression were not considered to be treatment failures. In 2015, Lonne et al reported a trial of X-STOP versus minimally invasive decompression in 96 patients with symptoms of neurogenic intermittent claudication relieved on flexion (NCT00546949).(9) Intention-to-treat analysis
showed no significant differences between the groups in primary and secondary outcome measures at up to 2-year follow-up. However, the number of patients having secondary surgery due to persistent or recurrent symptoms was significantly higher in the X-STOP group (25% vs 5%; odds ratio, 6.5). In addition, 2 patients had fracture of the spinous process and 1 had dislocation of the implant. Three patients in the decompression group had secondary surgery during the first hospital stay due to hematoma. Mean days of rehabilitation were 66 for X-STOP and 48 for surgical decompression. The study was terminated after planned mid-term analysis due to the higher reoperation rate with X-STOP.

Superion Versus X-STOP

In 2015, results were published from an FDA-regulated, multicenter randomized, investigational device exemption (IDE), noninferiority trial comparing the Superion interspinous spacer with the X-STOP. A total of 391 patients with intermittent neurogenic claudication despite 6 months of nonsurgical management were enrolled, randomized, and implanted with either Superion or X-STOP spacers, and followed for 2 years. The primary end point was a composite of clinically significant improvement in at least 2 of 3 ZCQ domain scores compared with baseline, freedom from reoperation, revision, removal, or supplemental fixation at the index level, freedom from epidural steroid injection or nerve block within 12 weeks of the 2-year visit, freedom from rhizotomy or spinal cord stimulator at any level, and freedom from major implant or procedure-related complications. The primary noninferiority end point was met, with a Bayesian posterior probability of 0.993. However, 111 patients (28%; 54 Superion, 57 XSTOP) were withdrawn from the study during follow-up due to a protocol-defined secondary intervention. Modified intention-to-treat analysis showed clinical success (improvement, ≥20 mm/100) for leg pain in 76% to 77% of patients and for back pain in 67% to 68% of patients, with no significant differences between groups. At 2 years, ODI success was achieved in 63% of Superion patients and 67% of XSTOP patients (p=0.061). Rates of complications and reoperations (44 [23.2%] Superion, 38 [18.9%] XSTOP) were similar between groups. Spinous process fractures, reportedly asymptomatic, occurred in 16.4% of Superion patients and 8.5% of XSTOP patients. Interpretation of this study is limited by the lack of a control group treated by surgical decompression.

Wallis Versus Decompression

In 2014, Marsh et al reported an RCT that compared decompression alone (n=30) versus decompression with a Wallis implant (n=30). Follow-up at an average of 40 months showed no significant differences between the groups in VAS for back or leg pain or in the ODI. Improvement in back pain was 3.5 of 10 with the Wallis implant compared with 2.7 without (p<0.192). Improvement in ODI was 19.3 with the Wallis implant compared with 19.6 without (p=0.079). Additional study in a larger population is needed.

Uncontrolled Series

Several large case series of patients implanted with X-STOP devices have been reported.

A series of 175 patients were treated at a German center between February 2003 and June 2007. Mean VAS score was reduced from 61.2 to 39 on a 100-point scale at 6 weeks postoperatively and maintained to the 2-year evaluation. Mean ODI scores were 32.6 (range, 8-80) preoperatively, 22.7 (range 0-85) at 6 weeks postoperatively, and 20.3 (range 0-42) at 2 years. No complications were associated with use of the device. Eight patients required removal of the device and microsurgical decompression because of unsatisfactory outcome.
Case series from other institutions have found good outcomes in only about a third of patients treated with the X-STOP.(14-17) For example, 1 study found that by 12 months, clinically significant improvement in symptoms and physical function was reported by 54% and 33% of the 24 patients, respectively, and 29% of patients required caudal epidural after 12 months for recurrence of symptoms of neurogenic claudication.(15) In another series with 46 patients, the overall clinical success rate, defined as an improvement of the ODI by at least 15 points or a satisfaction rating of “very satisfied,” was 36%.(16) A third series of 65 patients found that a good outcome was achieved in 31% of patients.(14)

In a 2010 paper, Rolfe et al evaluated outcomes of a series of 179 patients with and without scoliosis to test a contraindication which limits X-STOP use to patients with a maximum scoliosis of 25°.(18) Patients, who received the device between January 2006 and May 2007, were divided into 3 groups: group 1 without scoliosis (controls, n=116), group 2 patients with low scoliosis (11°-25°, n=41), and group 3 (high scoliosis, n=22). At 1 year, 56% of group 1 and group 2 patients, but only 18% of group 3 patients, achieved improvement of 15 or more points on ODI. Satisfaction rates were 76% for group 1, 78% for group 2, and 59% for group 3. On average, all 3 groups improved for each outcome: group 1 (ODI score, 17.3; VAS score, 2.0; standing time, 39 minutes; walking time, 43 minutes), group 2 (ODI score, 20.0; VAS score, 1.9; standing time, 65 minutes; walking time, 64 minutes), group 3 (ODI score, 7.2; VAS score, 0.9; standing time, 18 minutes; walking time, 16 minutes). The authors conclude that surgeons and patients must be aware that overall lumbar scoliosis greater than 25° may portend less favorable outcomes.

Adverse Events
A number of articles focus on complications with the X-STOP device.

Barbagallo et al analyzed complications in a series of 69 patients and proposed an anatomic scoring system for patient selection.(19) At a mean follow-up of 23 months, 8 complications (11.5%) were recorded: 4 device dislocations and 4 spinous process fractures.

Bowers et al reviewed records of 13 patients implanted with the X-STOP device at 1 U.S. center.(20) Nine patients had severe and 4 had moderate stenosis. Average follow-up was 42.9 months (range, 3-48 months). Initially, pain improved an average of 72%; however, preoperative pain returned in 77% of the patients. The overall complication rate was 38%, including 3 spinous process fractures and 2 instances of new onset radiculopathy. Eleven of the 13 patients required additional spinal surgery.

A prospective observational study found a high rate of spinous process fractures in 38 patients (50 implants, 97.4% follow-up) after implantation of the X-STOP titanium (n=34), X-STOP PEEK (n=8), or Aspen (n=8) devices.(21) Although no fracture was identifiable on plain radiographs, postoperative computed tomography identified nondisplaced spinous process fractures in 11 patients (28.9% of patients, 22% of levels). Direct interview of patients and review of medical records indicated that 5 fractures were associated with mild to moderate lumbar back pain, and 6 fractures were asymptomatic. Three of the 11 patients underwent device removal and laminectomy for persistent pain. Fractures in 3 other patients had healed by 1 year.

Verhoof et al reported that, in a cohort of 12 consecutive patients with symptomatic lumbar spinal stenosis caused by degenerative spondylolisthesis who were treated with X-STOP and
followed up for a mean of 30.3 months, 8 patients had complete relief of symptoms postoperatively while 4 had no relief. Recurrence of pain, neurogenic claudication, and worsening of neurologic symptoms were observed in 3 patients within 24 months. Postoperative radiographs and magnetic resonance imaging did not show changes in percentage of slip or spinal dimensions. Seven patients had posterior fusion within 24 months. The authors did not recommend the device for treatment of spinal stenosis complicating degenerative spondylolisthesis.

Interlaminar Stabilization Devices

Randomized Controlled Trials
The pivotal IDE trial for coflex® Interlaminar Technology was a nonblinded randomized multicenter noninferiority trial of decompression plus coflex® compared with decompression plus posterolateral fusion and pedicle screw fixation. A total of 344 patients were randomized in a 2:1 ratio (215 coflex®, 107 fusion controls, with 22 protocol violators). This study was conducted in a restricted population with numerous exclusion criteria. Compared with fusion, implantation of the coflex® device required less operative time (98.0 vs 153.2 minutes) and resulted in less blood loss (109.7 vs 348.6 mL) and a shorter hospital stay (1.9 vs 3.2 days). Composite clinical success (a combination of a minimum 15-point improvement in ODI, no reoperations, no device-related complications, and no epidural steroid injections in the lumbar spine) at 24 months achieved noninferiority compared with posterolateral fusion (66.2% coflex®, 57.7% fusion). Secondary effectiveness criteria, which included the ZCQ, VAS for leg and back pain, SF-12, time to recovery, patient satisfaction, and several radiographic end points, tended to favor the coflex® group by Bayesian analysis. For example, ZCQ composite success was achieved in 78.3% of coflex® patients (95% confidence interval [CI], 71.9% to 84.7%) compared with 67.4% of controls (95% CI, 57.5% to 77.3%). The percentage of device-related adverse events was the same for the 2 groups (5.6% coflex®, 5.6% control), and a similar percentage of asymptomatic spinous process fractures were observed. In the subset of patients with grade I spondylolisthesis, the coflex® and fusion groups had similar outcomes in ODI, VAS, and ZCQ, but the reoperation rate trended higher in the coflex® cohort (14.1% vs 5.9%, p=0.18). FDA considered the data in this nonblinded study to support reasonable assurance of safety and effectiveness for device approval, but approval is conditional on 2 additional studies that will provide longer term follow-up (in the IDE cohort) and evaluate device performance under actual conditions of use (decompression alone vs decompression with coflex®).

A European multicenter, randomized, double-blind trial (FELIX) compared implantation of coflex® (without bony decompression) versus bony decompression in 159 patients with intermittent neurogenic claudication due to lumbar spinal stenosis. Functional outcomes measured by the ZCQ and Modified Roland-Morris Disability Questionnaire (RMDS), and pain measured with VAS and the McGill Pain Questionnaire, were similar in the 2 groups at 1-year follow-up. Surgery time was shorter, but reoperation rates due to absence of recovery were higher in the coflex® group compared with the bony decompression group (29% vs 8%, p<0.001). For patients with 2-level surgery, the reoperation rate was 38% for coflex® versus 6% for bony decompression (p<0.05). At 2 years, reoperations due to absence of recovery had been performed in 33% of the coflex® group compared with 8% of the bony decompression group. VAS back pain at final follow-up was also higher in the coflex® group (36 mm vs 28 mm/100)
Controlled Cohort Studies
In 2010, Richter et al reported a prospective case control study of the coflex® device in 60 patients who underwent decompressive surgery.(28) Two-year follow-up from this study was published in 2014.(29) Decompression involved a partial laminotomy, removal of ligamentum flavum, and undercutting facetectomy. The surgeon determined whether the midline structures were preserved or resected and whether the coflex® device was implanted (1 or 2 levels). The indications for the 2 groups were identical, and use of the device was considered incidental to the surgery. No significant differences were observed between the groups on the ODI, RMDS, VAS for pain, and pain-free walking distance. At 2-year follow-up, there were no significant differences between the 2 groups for any of the outcome measures in this nonrandomized controlled cohort study, suggesting that additional placement of the coflex® device does not improve the clinical outcome of decompressive surgery. RCTs are needed to determine the efficacy of the coflex® interlaminar implant with greater certainty.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this policy are listed in Table 1.

Table 1. Summary of Key Active Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td>Post-Approval Clinical Study Comparing the Long Term Safety and</td>
<td>396</td>
<td>Oct 2015</td>
</tr>
<tr>
<td></td>
<td>Effectiveness of coflex vs. Fusion to Treat Lumbar Spinal Stenosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00534235</td>
<td>A 5 year comparative evaluation of clinical outcome in the treatment</td>
<td>245</td>
<td>Mar 2016</td>
</tr>
<tr>
<td></td>
<td>of degenerative spinal stenosis with concomitant low back pain by</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>decompression with and without additional stabilization using the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>coflex® Interlaminar Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00517751</td>
<td>Treatment of Lumbar Spinal Stenosis with X-STOP® PEEK Spacer</td>
<td>240</td>
<td>Jul 2022</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

^ Denotes industry-sponsored or cosponsored trial.

Clinical Input Received Through Physician Specialty Societies and Academic Medical Centers
While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

2009 Input
In response to requests, input was received from 1 physician specialty society and 3 academic medical centers while this policy was under review in 2009. Differing input was received; several reviewers felt data were sufficient to demonstrate improved outcomes.

2011 Input
In response to requests, input was received from 2 physician specialty societies and 2 academic medical centers while this policy was under review in March 2011. Two of those providing input agreed this technology is investigational due to the limited high-quality data on long-term outcomes including durability. Two reviewers did not consider this investigational but felt the
technology had a role in the treatment of selected patients with neurogenic intermittent claudication.

Summary of Evidence
Interspinous and interlaminar implants (spacers) stabilize or distract the adjacent lamina and/or spinous processes and restrict extension to reduce pain in patients with lumbar spinal stenosis and neurogenic claudication. Although the randomized device trials report short-term improvements in symptoms and functional status when compared with nonoperative therapy, a number of questions remain. Overall, high quality comparative data are limited. There is a need for longer-term (>2 years) outcome data on symptom relief, the need for repeat procedures, and implant survival. Future studies need to better control for potential biases and avoid other methodologic issues, including follow-up of patients in the control group and consistent use of outcome measurements. There are also questions about patient selection criteria; for instance, whether patients with any degree of spondylolisthesis should be excluded from this treatment. In addition, recent case series indicate that outcomes may be less favorable than those reported in the multicenter randomized trial. Because the impact of this technology on net health outcome is not known, these devices are considered investigational.

Practice Guidelines and Position Statements
The United Kingdom’s National Institute for Health and Clinical Excellence published guidance in November 2010 stating that “Current evidence on interspinous distraction procedures for lumbar spinal stenosis causing neurogenic claudication shows that these procedures are efficacious for carefully selected patients in the short and medium term, although failure may occur and further surgery may be needed. The evidence reviewed consisted mainly of reports on X-STOP.(30)

The 2009 guidelines from the American Pain Society indicate that interspinous spacer devices, based on fair evidence, have a B recommendation (panel recommends that clinicians consider offering the intervention).(31,32) The net benefit was considered moderate through 2 years, with insufficient evidence to estimate the net benefit for long-term outcomes.

In 2011, the North American Spine Society (NASS) updated their guidelines on the diagnosis and treatment of degenerative lumbar spinal stenosis.(33) They concluded there is insufficient evidence at this time to make a recommendation for or against the placement of an interspinous process spacing device in patients with lumbar spinal stenosis. These guidelines remain posted on the NASS website as of March 2014. In 2014, NASS published specific coverage policy recommendations on lumbar interspinous device without fusion.(34) NASS recommended that interspinous distraction devices may be indicated for degenerative lumbar stenosis with the following criteria: a) associated with neurogenic claudication that is relieved by lumbar flexion, b) patients older than 50 years old, c) failure of nonoperative treatment, d) no more than 25° of degenerative scoliosis, e) no more than a grade I degenerative spondylolisthesis, and f) open surgery (e.g., laminectomy) is not a medically safe treatment option because of comorbidities. NASS states that interspinous distraction devices are not indicated in cases that do not fall within these parameters.

U.S. Preventive Services Task Force Recommendations
Not applicable.
CODING

The following codes for treatment and procedures applicable to this policy are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

CPT/HCPCS

0171T Insertion of posterior spinous process distraction device (including necessary removal of bone or ligament for insertion and imaging guidance), lumbar; single level
0172T Insertion of posterior spinous process distraction device (including necessary removal of bone or ligament for insertion and imaging guidance), lumbar; each additional level (List separately in addition to code for primary procedure)
22899 Unlisted procedure, spine
C1821 Interspinous process distraction device (implantable)

- Effective January 1, 2007, there are specific CPT category III codes for this procedure: 0171T, 0172T.
- Effective January 1, 2007, there is also a HCPCS “C” Medicare pass-through code for the device: C1821

DIAGNOSES

Experimental / Investigational for all diagnoses related to this medical policy.

REVISIONS

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02-08-2010</td>
<td>The Interspinous Distraction Devices (Spacers) medical policy is a new freestanding policy developed from the Minimally Invasive Procedures for Spine Pain medical policy which was effective October 18, 2004. The Minimally Invasive Procedures for Spine Pain is no longer an active medical policy.</td>
</tr>
<tr>
<td>06-27-2011</td>
<td>Description updated.</td>
</tr>
<tr>
<td></td>
<td>Rationale updated.</td>
</tr>
<tr>
<td></td>
<td>In Coding section:</td>
</tr>
<tr>
<td></td>
<td>• Removed CPT code 22899 as there are specific codes for this service.</td>
</tr>
<tr>
<td></td>
<td>References updated.</td>
</tr>
<tr>
<td>02-24-2012</td>
<td>Description updated.</td>
</tr>
<tr>
<td></td>
<td>Rationale updated.</td>
</tr>
<tr>
<td></td>
<td>References updated.</td>
</tr>
<tr>
<td>03-19-2013</td>
<td>Description updated.</td>
</tr>
<tr>
<td></td>
<td>Rationale updated.</td>
</tr>
<tr>
<td></td>
<td>References updated.</td>
</tr>
<tr>
<td>01-23-2015</td>
<td>Updated Title to "Interspinous and Interlaminar Stabilization / Distraction Devices (Spacers)" from "Interspinous Distraction Devices (Spacers)".</td>
</tr>
<tr>
<td></td>
<td>Description updated</td>
</tr>
<tr>
<td></td>
<td>In Policy section:</td>
</tr>
<tr>
<td></td>
<td>• Added new experimental / investigational indication of "Use of an interlaminar stabilization device following decompressive surgery is considered experimental / investigational."</td>
</tr>
</tbody>
</table>
Rationale updated
In Coding section:
 ▪ Added CPT Code: 22899 (for interlaminar stabilization)
References updated

07-21-2015
 Updated Description section.
 Updated Rationale section.
 Updated References section.

REFERENCES

