Medical Policy

Title: Adjustable Cranial Orthoses for Positional Plagiocephaly and Craniosynostoses

Professional

- **Original Effective Date:** July 13, 2004
- **Revision Date(s):**
 - October 11, 2011; September 5, 2013; July 8, 2015; January 4, 2017; September 28, 2017
- **Current Effective Date:** September 5, 2013

Institutional

- **Original Effective Date:** July 13, 2004
- **Revision Date(s):**
 - October 11, 2011; September 5, 2013; July 8, 2015; January 4, 2017; September 28, 2017
- **Current Effective Date:** September 5, 2013

State and Federal mandates and health plan member contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. To verify a member’s benefits, contact [Blue Cross and Blue Shield of Kansas Customer Service](#).

The BCBSKS Medical Policies contained herein are for informational purposes and apply only to members who have health insurance through BCBSKS or who are covered by a self-insured group plan administered by BCBSKS. Medical Policy for FEP members is subject to FEP medical policy which may differ from BCBSKS Medical Policy.

The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents of Blue Cross and Blue Shield of Kansas and are solely responsible for diagnosis, treatment and medical advice.

If your patient is covered under a different Blue Cross and Blue Shield plan, please refer to the Medical Policies of that plan.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
</table>
| Individuals:
 • Who have open or endoscopic surgery for craniosynostosis | Interventions of interest are:
 • Postoperative cranial orthosis | Comparators of interest are:
 • Endoscopic or open cranial vault remodeling without a cranial orthosis | Relevant outcomes include:
 • Change in disease status
 • Morbid events
 • Functional outcomes
 • Quality of life
 • Treatment-related morbidity |

| Individuals:
 • With positional plagiocephaly | Interventions of interest are:
 • Cranial orthosis | Comparators of interest are:
 • Positioning therapy | Relevant outcomes include:
 • Change in disease status
 • Morbid events
 • Functional outcomes
 • Quality of life
 • Treatment-related morbidity |
DESCRIPTION
Cranial orthoses involve an adjustable helmet or band that progressively molds the shape of the infant cranium by applying corrective forces to prominences while leaving room for growth in the adjacent flattened areas. A cranial orthotic device may be used for the treatment of positional plagiocephaly or postsurgical synostosis in pediatric patients.

OBJECTIVE
The objective of this policy is to evaluate whether the use of an adjustable cranial orthosis improves health outcomes in infants who have undergone open or endoscopic surgery for craniosynostosis or with positional plagiocephaly.

BACKGROUND
Craniosynostoses
An asymmetrically shaped head may be synostotic or nonsynostotic. Synostosis, defined as premature closure of the sutures of the cranium, may result in functional deficits secondary to increasing intracranial pressure in an abnormally or asymmetrically shaped cranium. The type and degree of craniofacial deformity depends on the type of synostosis. The most common is scaphocephaly, a narrowed and elongated head resulting from synostosis of the sagittal suture. Trigonocephaly, in contrast, is premature fusion of the metopic suture results in a triangular shape of the forehead. Unilateral synostosis of the coronal suture results in an asymmetric distortion of the forehead called plagiocephaly, and fusion of both coronal sutures results in brachycephaly. Combinations of these deformities may also occur.

Treatment
Synostotic deformities associated with functional deficits are addressed by surgical remodeling of the cranial vault. The remodeling (reshaping) is accomplished by opening and expanding the abnormally fused bone.

In a 2008 review of the treatment of craniosynostosis, Persing indicated that premature fusion of one or more cranial vault sutures occurs in approximately 1 in 2500 births.\(^1\) Of these craniosynostoses, asymmetric deformities involving the cranial vault and base (eg, unilateral coronal synostosis) will have a higher rate of postoperative deformity, which would require additional surgical treatment. Persing suggested that use of cranial orthoses postoperatively may serve 2 functions: (1) they protect the brain in areas of large bony defects, and (2) they may remodel the asymmetries in skull shape, particularly when the bone segments are more mobile.

Plagiocephaly
Plagiocephaly without synostosis, also called positional or deformational plagiocephaly, can be secondary to various environmental factors including, but not limited to, premature birth, restrictive intrauterine environment, birth trauma, torticollis, cervical anomalies, and sleeping position. Positional plagiocephaly typically consists of right or left
occipital flattening with advancement of the ipsilateral ear and ipsilateral frontal bone protrusion, resulting in visible facial asymmetry. Occipital flattening may be self-perpetuating in that once it occurs, it may be increasingly difficult for the infant to turn and sleep on the other side. Bottle feeding, a low proportion of “tummy time” while awake, multiple gestations, and slow achievement of motor milestones may contribute to positional plagiocephaly. The incidence of plagiocephaly has increased rapidly in recent years; this is believed to be a result of the “Back to Sleep” campaign recommended by the American Academy of Pediatrics, in which a supine sleeping position is recommended to reduce the risk of sudden infant death syndrome. It is has been suggested that increasing awareness of identified risk factors and early implementation of good practices will reduce the development of deformational plagiocephaly.

Treatment
It is estimated that about two-thirds of plagiocephaly cases may auto-correct spontaneously after regular changes in sleeping position or following physical therapy aimed at correcting neck muscle imbalance. A cranial orthotic device is usually requested after a trial of repositioning fails to correct the asymmetry, or if the child is too immobile for repositioning.

REGULATORY STATUS
A number of devices cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process are intended to apply passive pressure to prominent regions of an infant’s cranium to improve cranial symmetry and/or shape in infants from 3 to 18 months of age. FDA product code: MVA.

POLICY
A. Use of an adjustable cranial orthosis may be considered medically necessary following cranial vault remodeling surgery for synostosis.

B. Use of an adjustable cranial orthosis for synostosis in the absence of cranial vault remodeling surgery is considered not medically necessary.

C. Use of an adjustable cranial orthosis as a treatment of plagiocephaly or brachycephaly without synostosis is considered not medically necessary.

Policy Guidelines
1. Procedures are considered medically necessary if there is a significant physical functional impairment AND the procedure can be reasonably expected to improve the physical functional impairment, ie, improve health outcomes.

2. Assessment of plagiocephaly in research studies may be based on anthropomorphic measures of the head, using anatomical and bony landmarks. However, there is no accepted minimum objective level of asymmetry for a plagiocephaly diagnosis.
RATIONALE

This policy was based on a 1999 TEC Assessment that concluded that the evidence regarding adjustable cranial orthoses as a treatment of positional plagiocephaly was insufficient to permit conclusions. Literature updates using the MEDLINE database since have been performed on a periodic basis. The most recent literature update was performed through June 22, 2017.

Cranial Orthoses for Craniosynostosis

Early literature consisted of a few case series that described the use of cranial orthoses following either open or endoscopically assisted surgery for craniosynostosis. For example, Kaufman et al (2004) reported, in a study involving 12 children, that the use of a cranial orthosis for 1 year after extended strip craniectomy appeared to improve the Cephalic Index (100 times the ratio of cranial biparietal diameter and occipitofrontal diameter) more than a similar type of surgery without an orthosis reported elsewhere. The Cephalic Index improved by 4 (range, 67-71) from baseline to 1 year in studies using surgery alone but improved by 10 (range, 65-75) with combined treatment (Cephalic Index normal range, 75-90). Stevens et al (2007) reported, in a study that involved 22 patients from a single institution, on the effect of postoperative remolding orthoses following total cranial vault remodeling. The children's ages at the time of surgery ranged from 4 to 16 months (average age, 7.5 months). For the 15 (68%) of 22 children treated who completed helmet use and were not lost to follow-up, helmets were worn an average of 134 days.

Jimenez et al (2002) reported on routine use of helmets for 12 months following endoscopically assisted surgery for craniosynostosis in 256 consecutive children. Anthropomorphic measurements at 3, 6, 9, and 12 months after surgery showed continued improvement in symmetry in most patients. In 2010, Jimenez and Barone reported on treatment of 21 infants with multiple-suture (nonsyndromic) craniosynostosis with endoscopically assisted craniectomies and postoperative cranial orthoses. Helmet therapy lasted an average of 11 months (range, 10-12 months). The decision to discontinue therapy was based on the child reaching the 12-month postoperative mark or 18 months of age. After the first year postsurgery, patients were followed annually or biannually (range, 3-135 months). The mean preoperative Cephalic Index was 98. The postoperative Cephalic Index (>1 year) was 83, a 15% decrease from baseline.

Since these initial reports, literature updates have identified larger series describing endoscopically assisted strip craniectomy and postoperative helmet therapy for craniosynostosis. They include a series of 97 children with nonsyndromic single-suture synostosis reported by Goçim et al (2012) and a series of 73 children reported by Honeycutt (2014). Honeycutt stated that because head-shape correction occurs slowly after surgery, helmet therapy is as important as the surgery to remove the abnormal suture.

In 2011, Shah et al compared prospectively collected outcomes from endoscopically assisted vs open repair of sagittal craniosynostosis in 89 children treated between 2003 and 2010. The endoscopic procedure was offered starting in 2006; since initially being offered, endoscopic repairs have become the most commonly performed approach. The 42 patients treated with open-vault reconstruction had a mean age at surgery of 6.8 months and a mean follow-up of 25 months. Mean age of the 47 endoscopically treated patients at surgery was 3.6 months and a mean follow-up was 13 months. Of the 29 endoscopically treated patients who completed helmet
therapy, the mean duration for helmet therapy was 8.7 months. Noncompliance with helmet therapy has also been reported in a substantial proportion of patients.12

Section Summary: Cranial Orthoses for Craniosynostosis

The evidence on the efficacy of cranial orthoses following endoscopically assisted or open cranial vault remodeling surgery for craniosynostosis is limited and includes only case series. In the postoperative period after craniosynostosis repair, the role of cranial orthoses is to continue remodeling the skull after surgery. Functional impairments are related to craniosynostosis, including the potential for increased intracranial pressure and risk of harm from additional surgery when severe deformity has not been corrected. This indirect evidence is considered sufficient to suggest an improvement in health outcomes with postsurgical use of cranial orthosis for craniosynostosis.

Cranial Orthoses for Positional Plagiocephaly

Results from a pragmatic multicenter, single-blinded, randomized controlled trial (HEADS [HElmet therapy Assessment in Deformed Skulls]) were reported in 2014.13 The trial included 84 infants ages 5 to 6 months with moderate-to-severe skull deformation (oblique diameter difference index ≥108% or cranioproportional index ≥95%) who were randomized to cranial orthoses for 6 months or to the natural course (observation). It should be noted that 3% of infants recruited were excluded from the trial due to very severe deformation (oblique diameter difference index >113% or cranioproportional index >104%). Of the 42 infants randomized to a cranial orthosis, 10 (23%) wore a cranial orthosis until 12 months of age. Parents of 10 infants discontinued treatment before 12 months due to adverse effects. The primary outcome (change score for plagiocephaly and brachycephaly at 24 months) was similar for the 2 groups. Full recovery was reported for 26% of children in the orthoses group and 23% of children in the observation arm (odds ratio, 1.2; 95% confidence interval, 0.4 to 3.3; p=0.74).

A systematic review by McGarry et al (2008) described 9 publications involving the use of cranial orthoses.14 More than half of the studies were retrospective cohorts; none was randomized. For studies comparing orthoses with active counter positioning, one reported greater decreases in posterior cranial asymmetry (from 12 to 0.6 mm) than treatment of infants using repositioning alone (from 12 to 10 mm); other studies found faster, but ultimately similar, reductions in asymmetry with helmets.15,16 Another 2008 systematic review identified 7 cohort studies meeting selection criteria.17 In most studies, physicians offered (and parents elected) the method of treatment, resulting in a bias toward older infants and greater deformity in the molding groups. One study included 159 infants with molding therapy and 176 treated with repositioning and physical therapy.18 Molding therapy was recommended for infants older than 6 months with more severe deformity, and repositioning was recommended for infants 4 months or younger. Both treatments were offered for infants between 4 and 6 months of age, although anthropomorphic measurements indicated that molding therapy was effective in 93% of infants, while repositioning was effective in 79% of infants. In this review, the relative risk was 1.3 favoring molding therapy. A 2014 prospective longitudinal study of 128 infants treated with or without a helmet found that, although children treated with a helmet had more severe asymmetry originally, they showed significantly more improvement (68% vs 31%).19 In another study (2013) of 1050 infants, Couture et al reported successful use of off-the-shelf helmet therapy.20 Infants with an Argenta classification type I (minimal deformity) were treated with repositioning while infants with an Argenta severity rating of II to V were treated with a helmet. Correction (overall rate, 81.6%)
took longer in patients with an Argenta severity of III, IV, and V compared with Argenta type II, but was not significantly affected by age.

Positional Plagiocephaly and Functional Outcomes

Since publication of the 1999 TEC Assessment, few studies have examined the association between positional plagiocephaly and functional impairments. Some, such as that by Fowler et al (2008), found no difference in the neurologic profile, posture, or behavior of 49 infants with positional plagiocephaly compared with 50 age-matched concurrent controls.21

Other studies have compared developmental outcomes in children with positional plagiocephaly to normative values. Panchal et al (2001) reported that scores from a standardized measure of mental and psychomotor development differed significantly from the expected standardized distribution, with 8.7% of children categorized as severely delayed on the Mental Development Index compared with the expected 2.5%.22 A 2000 study by Miller and Clarren obtained responses on long-term developmental outcomes in 63 of 181 children asked to participate in this study.23 Results were limited by the lack of concurrent controls and potential self-selection population bias. In addition, these studies did not evaluate the possible causal relation for the observed association. For example, children with preexisting development delays or weakness might be at a higher risk for plagiocephaly if they were more apt to lie in 1 position for extended periods of time.

The effect of treatment for positional plagiocephaly on health outcomes has also been investigated.24 In a 2012 study, parents of 80 children treated for positional plagiocephaly responded to surveys that assessed cosmetic outcome, school performance, language skills, cognitive development, and societal function. Analysis indicated that the children of respondents were representative of the total pool. Positional therapy was applied in all children, while 36% also used helmet therapy. At a median follow-up of 9 years, normal head appearance was reported in 75% of cases. Compared with right-sided deformation, left-sided plagiocephaly was associated with a need for special education classes (27% vs 10%), fine motor delay (41% vs 22%), and speech delay (36% vs 16%).

Section Summary: Cranial Orthoses for Positional Plagiocephaly

Results from the randomized HEADS trial have suggested that, in a practice setting, the effectiveness of a cranial orthoses may not differ from the natural course of development for infants with moderate-to-severe plagiocephaly and brachycephaly. However, the validity of these results is limited by the low percentage of infants who wore the cranial orthoses for the duration of the trial and the relatively low percentage of infants who achieved recovery in either group. In addition, the efficacy of cranial orthoses in infants with very severe plagiocephaly was not addressed. A few reports have assessed the association between positional plagiocephaly and functional impairments. The largest controlled study found no difference in function between infants with plagiocephaly and age-matched concurrent controls. While some series have suggested an association between plagiocephaly and developmental delay, they lacked controls and did not evaluate the possible causal relation to observed association. Results of a study on right-sided vs left-sided plagiocephaly suggested an association between left-sided and functional performance, but these results would need corroboration.
SUMMARY OF EVIDENCE

For individuals who have open or endoscopic surgery for craniosynostosis who receive a postoperative cranial orthosis, the evidence includes case series. Relevant outcomes are change in disease status, morbid events, functional outcomes, quality of life, and treatment-related morbidity. Overall, the evidence on the efficacy of cranial orthoses following endoscopic-assisted or open cranial vault remodeling surgery for craniosynostosis is limited. However, functional impairments are related to craniosynostosis, and there is a risk of harm from additional surgery when severe deformity has not been corrected. Because cranial orthoses can facilitate remodeling, use of a cranial orthosis is likely to improve outcomes after cranial vault remodeling for synostosis. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have positional plagiocephaly who receive a cranial orthosis, the evidence includes a comparative study and case series. Relevant outcomes are change in disease status, morbid events, functional outcomes, quality of life, and treatment-related morbidity. Overall, evidence on an association between positional plagiocephaly and health outcomes is limited. The largest controlled study found no difference in function between infants with plagiocephaly and age-matched concurrent controls. Taking into consideration the limited number of publications over the past decade and the likelihood of both study and publication bias in uncontrolled studies, the scientific literature does not support an effect of deformational plagiocephaly on functional health outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

CLINICAL INPUT RECEIVED THROUGH PHYSICIAN SPECIALTY SOCIETIES AND ACADEMIC MEDICAL CENTERS

While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

In response to requests, input was received from 3 physician specialty societies (4 reviews) and 2 academic medical centers while this policy was under review in 2008. Input was mixed about whether the use of helmets/adjustable banding for treatment of plagiocephaly or brachycephaly without synostosis should be considered medically necessary or not medically necessary. Clinical input agreed that cranial orthoses may be indicated following cranial vault surgery.

PRACTICE GUIDELINES AND POSITION STATEMENTS

Congress of Neurological Surgeons et al.

In 2016, the Congress of Neurological Surgeons, American Association of Neurological Surgeons, the Congress of Neurological Surgeons, and American Academy of Pediatrics published a joint evidence-based guideline on the role of cranial molding orthosis therapy for patients with positional plagiocephaly.25,26 They provided level II recommendations (uncertain clinical certainty) on the use of helmet therapy “for infants with persistent moderate to severe plagiocephaly after a course of conservative treatment (repositioning and/or physical therapy)” and “for infants with moderate to severe plagiocephaly presenting at an advanced age.” The recommendations were based on a randomized controlled trial, 5 prospective comparative studies, and 9 retrospective comparative studies (all rated as class II evidence).
National Institute of Neurological Disorders and Stroke
The National Institute of Neurological Disorders and Stroke has stated that “treatment for craniosynostosis generally consists of surgery to improve the symmetry and appearance of the head and to relieve pressure on the brain and the cranial nerves [although] for some children with less severe problems, cranial molds can reshape the skull to accommodate brain growth and improve the appearance of the head.”

National Health Service Quality Improvement
In 2007, Scotland’s National Health Service Quality Improvement issued an evidence note on the use of cranial orthosis treatment for infant deformational plagiocephaly. No evidence-based conclusions could be reached due to the limited methodologic quality of available trials. The evidence note concluded that randomized controlled trial would be needed to determine the true effectiveness of cranial orthoses.

American Academy of Pediatrics
In 2011, the American Academy of Pediatrics (AAP) revised its 2003 policy on the prevention and management of positional skull deformities in infants. AAP indicated that, in most cases, the diagnosis and successful management of deformational plagiocephaly can be assumed by the pediatrician or primary health care clinician and that mechanical methods, if performed early in life, may prevent further skull deformity and may reverse existing deformity. In most cases, an improvement is seen over a 2- to 3-month period with repositioning and neck exercises, especially if these measures are instituted as soon as the condition is recognized. AAP indicated that use of helmets and related devices seems to be beneficial primarily when there has been a lack of response to mechanical adjustments and exercises, and the best response to helmets occurs in the age range of 4 to 12 months of age.

In a 2011 policy statement, AAP indicated that consideration should be given to early referral of infants with plagiocephaly when it is evident that conservative measures have been ineffective, because orthotic devices may help avoid the need for surgery in some cases. AAP also recommended placing infants on their backs for sleep with supervised “tummy time” for the prevention of plagiocephaly.

U.S. PREVENTIVE SERVICES TASK FORCE RECOMMENDATIONS
Not applicable.

ONGOING AND UNPUBLISHED CLINICAL TRIALS
Some currently unpublished trials that might influence this review are listed in Table 1.

Table 1. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02370901</td>
<td>Cranial Orthotic Device Versus Repositioning Techniques for the Management of Plagiocephaly: the CRANIO Randomized Trial</td>
<td>200</td>
<td>Sep 2017</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.
CODING

The following codes for treatment and procedures applicable to this policy are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

CPT/HCPCS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>97762</td>
<td>Checkout for orthotic/prosthetic use, established patient, each 15 minutes</td>
</tr>
<tr>
<td>97799</td>
<td>Unlisted physical medicine/rehabilitation service or procedure</td>
</tr>
<tr>
<td>S1040</td>
<td>Cranial remodeling orthosis, pediatric, rigid, with soft interface material, custom fabricated, includes fitting and adjustment</td>
</tr>
</tbody>
</table>

ICD-9 Diagnoses

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>738.19</td>
<td>Other specified deformity of head</td>
</tr>
<tr>
<td>754.0</td>
<td>Certain congenital musculoskeletal deformities of skull, face, and jaw</td>
</tr>
<tr>
<td>754.1</td>
<td>Certain congenital musculoskeletal anomalies of sternocleidomastoid muscle</td>
</tr>
<tr>
<td>756.0</td>
<td>Other congenital musculoskeletal anomalies of skull and face bones</td>
</tr>
<tr>
<td>767.8</td>
<td>Other specified birth trauma</td>
</tr>
</tbody>
</table>

ICD-10 Diagnoses (Effective October 1, 2015)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M95.2</td>
<td>Other acquired deformity of head</td>
</tr>
<tr>
<td>M99.80</td>
<td>Other biomechanical lesions of head region</td>
</tr>
<tr>
<td>Q67.2</td>
<td>Dolichocephaly</td>
</tr>
<tr>
<td>Q67.3</td>
<td>Plagiocephaly</td>
</tr>
<tr>
<td>Q67.4</td>
<td>Other congenital deformities of skull, face and jaw</td>
</tr>
<tr>
<td>Q75.0</td>
<td>Craniosynostosis</td>
</tr>
<tr>
<td>Q75.1</td>
<td>Craniofacial dysostosis</td>
</tr>
<tr>
<td>Q75.8</td>
<td>Other specified congenital malformations of skull and face bones</td>
</tr>
<tr>
<td>Q75.9</td>
<td>Congenital malformation of skull and face bones, unspecified</td>
</tr>
</tbody>
</table>

REVISIONS

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-11-2011</td>
<td>Policy added to the bcbsks.com web site.</td>
</tr>
<tr>
<td>09-05-2013</td>
<td>Updated Description. In the Policy section:</td>
</tr>
<tr>
<td></td>
<td>• Revised Item B from:</td>
</tr>
<tr>
<td></td>
<td>" An adjustable cranial orthosis as a treatment of moderate to severe plagiocephaly without synostosis is considered medically necessary when all the following criteria are met:</td>
</tr>
<tr>
<td></td>
<td>1. The infant is at least 3 months of age but not greater than 18 months of age; AND</td>
</tr>
<tr>
<td></td>
<td>2. Marked asymmetry has not been substantially improved following conservative therapy of at least 2 months duration with cranial repositioning therapy. Due to the mobility of infants greater than 4 months of age, repositioning therapy is not effective and thus, a trial of repositioning is not indicated; AND</td>
</tr>
<tr>
<td></td>
<td>3. Asymmetry of the cranial base as documented by any of the following:</td>
</tr>
<tr>
<td></td>
<td>a. Skull Base Asymmetry: At least 6 mm right / left discrepancy measure</td>
</tr>
</tbody>
</table>
subnasally to the tip of the tragus (cartilaginous projection of the auricle at the front of the ear); or

b. **Cranial Vault Asymmetry**: At least a 8 mm right / left discrepancy, measured from the frontozygomaticus point (identified by palpation of the suture line above the upper outer corner of the orbit) to the contralateral euryon, defined as the most lateral point on the head located in the parietal region; or

c. **Asymmetry of the orbitotragial distances**, as documented by at least 4 mm right / left asymmetry measure from the lateral aspect of orbit to tip of ipsilateral tragus.

4. The custom molded orthotic is designed to fit a child’s head from 2-4 months. A second helmet or band may be required if the asymmetry has not resolved or significantly improved after 2-4 months."

- Revised Item C from:
 "Use of an adjustable cranial orthosis for synostosis in the absence of cranial vault remodeling surgery and as treatment of brachycephaly is considered medically necessary."

REFERENCES

Other References
4. Blue Cross and Blue Shield of Kansas Medical Consultant Review, May 2, 2011.
5. Blue Cross and Blue Shield of Kansas Family Practice Liaison Committee Consent Ballot, August 2011.