Title: Decompression of the Intervertebral Disc Using Laser Energy (Laser Discectomy) or Radiofrequency Coblation (Nucleoplasty)

<table>
<thead>
<tr>
<th>Professional</th>
<th>Institutional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Effective Date: October 18, 2004</td>
<td>Original Effective Date: July 1, 2005</td>
</tr>
<tr>
<td>Revision Date(s): September 7, 2005; February 21, 2006; May 6, 2006; July 27, 2006; September 14, 2006; October 31, 2006; January 1, 2007; November 18, 2009; February 8, 2010; September 20, 2011; January 1, 2012; November 6, 2012; October 13, 2015; January 1, 2017; May 23, 2018; September 11, 2019; August 21, 2020</td>
<td>Revision Date(s): September 7, 2005; February 21, 2006; May 6, 2006; July 27, 2006; September 14, 2006; October 31, 2006; January 1, 2007; November 18, 2009; February 8, 2010; September 20, 2011; January 1, 2012; November 6, 2012; October 13, 2015; January 1, 2017; May 23, 2018; September 11, 2019; August 21, 2020</td>
</tr>
<tr>
<td>Current Effective Date: February 8, 2010</td>
<td>Current Effective Date: February 8, 2010</td>
</tr>
</tbody>
</table>

State and Federal mandates and health plan member contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. To verify a member's benefits, contact Blue Cross and Blue Shield of Kansas Customer Service.

The BCBSKS Medical Policies contained herein are for informational purposes and apply only to members who have health insurance through BCBSKS or who are covered by a self-insured group plan administered by BCBSKS. Medical Policy for FEP members is subject to FEP medical policy which may differ from BCBSKS Medical Policy.

The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents of Blue Cross and Blue Shield of Kansas and are solely responsible for diagnosis, treatment and medical advice.

If your patient is covered under a different Blue Cross and Blue Shield plan, please refer to the Medical Policies of that plan.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients/individuals with: • With discogenic back pain or radiculopathy</td>
<td>Interventions of interest are: • Laser discectomy</td>
<td>Comparators of interest are: • Conservative management • Epidural steroid injection • Discectomy</td>
<td>Relevant outcomes include: • Symptoms • Functional outcomes • Treatment-related morbidity</td>
</tr>
</tbody>
</table>
DESCRIPTION
Laser energy (laser discectomy) and radiofrequency (RF) coblation (nucleoplasty) are being evaluated for decompression of the intervertebral disc. For laser discectomy under fluoroscopic guidance, a needle or catheter is inserted into the disc nucleus, and a laser beam is directed through it to vaporize tissue. For disc nucleoplasty, bipolar radiofrequency energy is directed into the disc to ablate tissue. These minimally invasive procedures are being evaluated for the treatment of discogenic back pain.

Objective
The objective of this evidence review is to evaluate whether laser discectomy or disc nucleoplasty with radiofrequency coblation improve the net health outcome in patients who have discogenic back pain.

Background

Discogenic Low Back Pain
Discogenic low back pain is a common, multifactorial pain syndrome that involves low back pain without radicular symptoms findings, in conjunction with radiologically confirmed degenerative disc disease.

Treatment
Typical treatment includes conservative therapy with physical therapy and medication management, with potential for surgical decompression in more severe cases.

A variety of minimally invasive techniques have been investigated as a treatment of low back pain related to disc disease. Techniques can be broadly divided into those designed to remove or ablate disc material, and thus decompress the disc, and those designed to alter the biomechanics of the disc annulus. The former category includes chymopapain injection, automated percutaneous lumbar discectomy, laser discectomy, and most recently, disc decompression using RF energy, referred to as a disc nucleoplasty.

A variety of different lasers have been investigated for laser discectomy, including YAG (yttrium aluminum garnet), KTP (potassium titanyl phosphate), holmium, argon, and carbon dioxide lasers. Due to differences in absorption, the energy requirements and the rates of application differ among the lasers. In addition, it is unknown how much disc material must be removed to achieve decompression. Therefore, protocols vary by the length of treatment, but typically the laser is activated for brief periods only.
RF coblation uses bipolar low-frequency energy in an electrical conductive fluid (eg, saline) to generate a high-density plasma field around the energy source. This creates a low-temperature field of ionizing particles that break organic bonds within the target tissue. Coblation technology is used in a variety of surgical procedures, particularly related to otolaryngology. The disc nucleoplasty procedure is accomplished with a probe mounted using an RF coblation source. The proposed advantage of coblation is that the procedure provides for controlled and highly localized ablation, resulting in minimal damage to surrounding tissue.

Regulatory Status

A number of laser devices have been cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process for incision, excision, resection, ablation, vaporization, and coagulation of tissue. Intended uses described in FDA summaries include a wide variety of procedures, including percutaneous discectomy. Trimedyne received 510(k) clearance in 2002 for the Trimedyne® Holmium Laser System Holmium: Yttrium, Aluminum Garnet (Holmium: YAG), in 2007 RevoLix Duo™ Laser System, and in 2009 Quanta System LITHO Laser System. All were cleared, based on equivalence with predicate devices for percutaneous laser disc decompression / discectomy, including foraminoplasty, percutaneous cervical disc decompression / discectomy, and percutaneous thoracic disc decompression / discectomy. The summary for the Trimedyne® system states that indications for cervical and thoracic decompression / discectomy include uncomplicated ruptured or herniated discs, sensory changes, imaging consistent with findings, and symptoms unresponsive to 12 weeks of conservative treatment. Indications for treatment of cervical discs also include positive nerve conduction studies. FDA product code: GEX.

In 2001, the Perc-D SpineWand™ (ArthroCare) was cleared for marketing by FDA through the 510(k) process. FDA determined that this device was substantially equivalent to predicate devices. It is used in conjunction with the ArthroCare Coblation® System 2000 for ablation, coagulation, and decompression of disc material to treat symptomatic patients with contained herniated discs. Smith & Nephew acquired ArthroCare in 2014; as of 2017, Smith & Nephew has not provided any information about coblation devices specific to spine surgeries on its website. FDA product code: GEI.
POLICY

Laser discectomy and radiofrequency coblation (disc nucleoplasty) are considered experimental / investigational as techniques of disc decompression and treatment of associated pain.

RATIONALE

This evidence review has been updated with searches of the PubMed database. The most recent update was performed through February 11, 2020.

Evidence reviews assess the clinical evidence to determine whether the use of a technology improves the net health outcome. Broadly defined, health outcomes are length of life, quality of life, and ability to function, including benefits and harms. Every clinical condition has specific outcomes that are important to patients and to managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of a technology, 2 domains are examined: the relevance and the quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

Laser Discectomy

Clinical Context and Therapy Purpose

The purpose of decompression of the intervertebral disc using laser discectomy for patients with discogenic back pain or radiculopathy is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Does decompression of the intervertebral disc using laser discectomy improve the net health outcome in patients with discogenic back pain or radiculopathy?

The following PICO was used to select literature to inform this review.

Patients

The relevant population of interest is individuals with discogenic back pain or radiculopathy.
Interventions
The therapy being considered is laser discectomy. Laser discectomy is performed by an orthopedist or spine specialist in an outpatient clinical setting.

Comparators
The following therapies are currently being used to make decisions about laser discectomy: conservative management such as physical therapy and medication, epidural steroid injection, and the potential for conventional discectomy or surgical decompression in severe cases. Patients with discogenic back pain or radiculopathy are managed by orthopedists or spine specialists.

The optimal comparators are conservative therapy with a sham control, epidural steroid injection, or conventional discectomy.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and treatment-related morbidity.

Laser discectomy has a fairly extensive literature describing different techniques using different lasers.

Follow-up would ideally be ≥ 1 year.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:
1. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs.
2. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
3. To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
4. Studies with duplicative or overlapping populations were excluded.

Review of Evidence
Systematic Reviews
Singh et al (2013) updated their systematic review of current evidence on percutaneous laser disc decompression. They selected 17 observational studies. Due to the lack of RCTs, meta-analysis could not be conducted, and evidence was considered limited, as rated using U.S. Preventive Services Task Force criteria. A Cochrane review (2007) of surgical interventions for lumbar disc prolapse included 2 comparative studies on laser discectomy that were reported in as proceedings and abstracts. Reviewers concluded that clinical outcomes following automated discectomy and laser discectomy “are at best fair and certainly worse than after microdiscectomy, although the importance of patient selection is acknowledged.”

Observational Studies
Tassi et al (2006) compared outcomes from 500 patients who had discogenic pain and herniated discs treated using microdiscectomy (1997-2001 by 6 surgeons) with 500 patients treated using percutaneous laser disc decompression (2002-2004 by a single surgeon). Patients with sequestered discs were excluded. This retrospective review found that the hospital stay (6 days...
vs. 2 days), overall recovery time (60 days vs. 35 days), and repeat procedure rates (7% vs. 3%), all respectively, were shorter or had lower rates in the laser group than in the microdiscectomy group. No statistical comparisons were provided. The percentage of patients with overall good/excellent outcomes (Macnab criteria measuring pain and function) was found to be similar in both groups (85.7% vs. 83.8%, respectively) at the 2-year assessment; quantitative outcome measures were not reported.

Other than the comparative studies previously mentioned, the evidence for laser discectomy is limited to case series. Choy (2004) published the largest series, which included 1,275 patients treated with 2,400 procedures (including cervical, thoracic, lumbar discs) over 18.5 years, with an overall success rate using the Macnab criteria of 89%. Menchetti et al (2011) retrospectively reviewed 900 patients treated with laser discectomy for herniated nucleus pulposus. The success rate using Macnab criteria at a mean of 5 years (range, 2-6 years) was 68%. Visual analog scale scores for pain decreased from 8.5 preoperatively to 2.3 at the 3-year follow-up but increased to 3.4 at the 5-year follow-up. There was a correlation between fair/poor results and subannular extrusion; 40% of these cases were treated with microsurgery after 1 to 3 months.

Section Summary: Laser Discectomy
Evidence on decompression of the intervertebral disc using laser energy consists of observational studies. Given the variable natural history of back pain and the possibility of placebo effects with this treatment, observational studies are insufficient to permit conclusions concerning the effect of this technology on health outcomes.

Disc Nucleoplasty With Radiofrequency Coblation
Clinical Context and Therapy Purpose
The purpose of decompression of the intervertebral disc using radiofrequency coblation for patients with discogenic back pain or radiculopathy is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Does decompression of the intervertebral disc using disc nucleoplasty with radiofrequency coblation improve the net health outcome in patients with discogenic back pain or radiculopathy?

The following PICO was used to select literature to inform this review.

Patients
The relevant populations of interest is individuals with discogenic back pain or radiculopathy.

Interventions
The therapy being considered is disc nucleoplasty with radiofrequency coblation. Disc nucleoplasty with radiofrequency coblation is performed by an orthopedist or spine specialist in an outpatient clinical setting.

Comparators
The following therapies are currently being used to make decisions about laser discectomy: conservative management such as physical therapy and medication, epidural steroid injection, and the potential for conventional discectomy or surgical decompression in severe cases. Patients with discogenic back pain or radiculopathy are managed by orthopedists or spine specialists.
The optimal comparators are conservative therapy with a sham control, epidural steroid injection, or conventional discectomy.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and treatment-related morbidity.

Follow-up would ideally be ≥ 1 year.

Study Selection Criteria
Methodologically credible studies were selected using the principles described in the first indication.

Review of Evidence

Systematic Reviews
Manchikanti et al (2013) identified an RCT (described below) and 14 observational studies on disc nucleoplasty (radiofrequency coblation) that met inclusion criteria for their systematic review; they concluded that the evidence was limited to fair.

Randomized Controlled Trials
Gerszten et al (2010), included in the above systematic review, conducted an industry-sponsored, unblinded, multicenter RCT that compared coblation nucleoplasty with 2 epidural steroid injections. Ninety patients were initially randomized (46 to coblation nucleoplasty arm and 44 to epidural steroid injections arm). The intention-to-treat analysis was defined on the basis of 85 patients (45 in nucleoplasty group and 40 in epidural steroid injections group) who ultimately underwent the assigned intervention. All patients had previously had an epidural steroid injection at 3 weeks to 6 months with no relief, temporary relief, or partial relief of pain. The primary outcome was pain reduction assessed by visual analog scale score. At the 6-month follow-up, the mean improvement in visual analog scale scores for leg pain, back pain, Oswestry Disability Index scores, and 36-Item Short-Form Health Survey (SF-36) subscores were significantly greater in the nucleoplasty group. A greater percentage of patients in the nucleoplasty group also had a minimum clinically important change for leg pain, back pain, Oswestry Disability Index, and 36-Item Short-Form Health Survey (SF-36) scores. The proportion of patients in each group with unresolved symptoms requiring a secondary procedure during the first 6 months of the trial did not differ between groups (27% for nucleoplasty vs. 20% for epidural steroid). At 1-year follow-up, secondary procedure rates increased to 42% of the nucleoplasty group and to 68% of the steroid group. All patients who requested a secondary procedure were cared for as considered appropriate by the study investigator. For the epidural steroid injections and coblation nucleoplasty groups, respectively, secondary procedures that were pursued included additional epidural steroid injections (5 and 13 patients), other radiofrequency ablation (2 and 2), coblation nucleoplasty (20 and 0), microdiscectomy (2 and 4), and lumbar interbody fusion (0 and 1).

Chitragran et al (2012) published results of an unblinded RCT conducted in Asia that compared nucleoplasty with conservative treatment in 64 patients. Visual analog scale scores at 15 days after treatment were reduced by 4 points from baseline (9 to 5). The nucleoplasty group was reported to have a reduction in pain and medication use compared with conservatively treated controls at 1, 3, 6, and 12 months posttreatment, although the data were not presented.
Comparison of magnetic resonance images at baseline and after treatment showed a decrease in disc bulging from 5.09 mm to 1.81 mm at 3 months after nucleoplasty.

Cohort Studies

Bokov et al (2010) reported a nonrandomized cohort study comparing nucleoplasty with microdiscectomy. Patients undergoing nucleoplasty were grouped into those with a disc protrusion (n=46) or a disc extrusion (n=27). Patients were rated at 1, 3, 6, 12, and 18 months for pain visual analog scale and Oswestry Disability Index scores. A satisfactory result was defined as a 50% decrease in visual analog scale score and a 40% decrease in Oswestry Disability Index score. For patients with a disc protrusion treated with nucleoplasty, satisfactory results were obtained in 36 (78%). For patients with a disc protrusion treated with microdiscectomy, a satisfactory result was observed in 61 (94%) patients. For patients with a disc extrusion, nucleoplasty had a significantly higher rate of unsatisfactory results; clinically significant improvements were observed in 12 (44%) cases; and 9 (33%) patients with disc extrusion treated with nucleoplasty subsequently underwent microdiscectomy for exacerbation of pain.

Birnbaum (2009) compared outcomes from a series of 26 patients who had cervical disc herniation treated using disc nucleoplasty with a group of 30 patients who received conservative treatment using bupivacaine and prednisolone acetate. Baseline visual analog scale score was 8.4 in the control group and 8.8 in the nucleoplasty group. At 1 week, scores were 7.3 and 3.4, respectively, and at 24 months, 5.1 and 2.3, respectively. No other outcome data were provided.

Cuellar et al (2010) reported on an observational study evaluating accelerated degeneration after failed nucleoplasty. Of 54 patients referred for persistent pain after nucleoplasty, 28 patients were evaluated by magnetic resonance imaging to determine the source of their symptoms. Visual analog scale score for pain in this cohort was 7.3. At a mean follow-up of 24 weeks (range, 6-52 weeks) after nucleoplasty, no change was observed between baseline and postoperative magnetic resonance imaging results for increased signal hydration, disc space height improvement, or shrinkage of the preoperative disc bulge. Of 17 cervical levels treated in 12 patients, 5 (42%) patients appeared to show progressive degeneration at treated levels. Of 17 lumbar procedures in 16 patients, 4 (15%) patients showed progressive degeneration. Overall, 32% of the patients in this series showed progressive degeneration at the treatment level less than 1 year after nucleoplasty. The proportion of discs showing progressive degeneration of the total nucleoplasty procedures performed cannot be determined from this study. It is also unknown whether any morphologic changes occurring after nucleoplasties were considered successful. Additional study of this potential adverse event of nucleoplasty is needed.

Section Summary: Disc Nucleoplasty With Radiofrequency Coblation

Two unblinded RCTs have assessed nucleoplasty. One was from Asia and compared nucleoplasty with conservative therapy. The other RCT was an industry-sponsored comparison of coblation nucleoplasty with epidural steroid injections in a group of patients who had already failed the control intervention. At 6-month follow-up, scores for pain and functional status were superior for the nucleoplasty group, but a similar percentage of patients in the 2 groups had unresolved symptoms and received a secondary procedure. In the observational phase of the trial (2-year follow-up), 50% of patients in the epidural steroid group crossed over to nucleoplasty. The manner in which alternative interventions were offered in the observational phase is uncertain. Overall, interpretation of these study results is limited. Results from a cohort study support the
conclusion that nucleoplasty is not as effective as microdiscectomy for disc extrusion. Prospective controlled trials comparing nucleoplasty with microdiscectomy are needed to evaluate efficacy and time to recovery in patients with disc protrusion. Notably, a case series reported accelerated degeneration after nucleoplasty. Adequate follow-up with magnetic resonance imaging is needed to determine if nucleoplasty accelerates disc degeneration.

Summary of Evidence

For individuals who have discogenic back pain or radiculopathy who receive laser discectomy, the evidence includes systematic reviews of observational studies. Relevant outcomes are symptoms, functional outcomes, and treatment-related morbidity. While numerous case series and uncontrolled studies have reported improvements in pain levels and functioning following laser discectomy, the lack of well-designed and -conducted controlled trials limits interpretation of reported data. The evidence is insufficient to determine the effect of the technology on health outcomes.

For individuals who have discogenic back pain or radiculopathy who receive disc nucleoplasty with radiofrequency coblation, the evidence includes randomized controlled trials and systematic reviews. Relevant outcomes are symptoms, functional outcomes, and treatment-related morbidity. For nucleoplasty, there are 2 randomized controlled trials in addition to several uncontrolled studies. These randomized controlled trials are limited by the lack of blinding, an inadequate control condition in one, and inadequate data reporting in the second. The available evidence is insufficient to permit conclusions concerning the effect of these procedures on health outcomes due to multiple confounding factors that may bias results. High-quality randomized trials with adequate follow-up (at least 1 year), which control for selection bias, the placebo effect, and variability in the natural history of low back pain, are needed. The evidence is insufficient to determine the effect of the technology on health outcomes.

Practice Guidelines and Position Statements

National Institute for Health and Care Excellence

In 2016, the National Institute for Health and Care Excellence (NICE) updated its guidance on laser lumbar discectomy for the treatment of sciatica.\(^\text{13}\) The guidance stated that current evidence “is inadequate in quantity and quality.”

Also in 2016, NICE also updated its guidance on percutaneous disc decompression using coblation for lower back pain and sciatica in 2016.\(^\text{14}\) NICE stated: “Current evidence on percutaneous coblation of the intervertebral disc for low back pain and sciatica raises no major safety concerns. The evidence on efficacy is adequate and includes large numbers of patients with appropriate follow-up periods.” The guidance also noted that the patient should be informed of the range of treatment options available.

American Pain Society

The 2009 American Pain Society practice guidelines on nonsurgical interventions for low back pain found that “there is insufficient (poor) evidence from randomized trials (conflicting trials, sparse and lower quality data, or no randomized trials) to reliably evaluate” a number of interventions including coblation.\(^\text{15,16}\).
American Society of Interventional Pain Physicians
In 2009, updated in 2013, The American Society of Interventional Pain Physicians issued practice guidelines on lumbar disc compression and chronic spinal pain. The systematic reviews informing the 2013 guidelines found limited evidence for percutaneous laser disc decompression and limited to fair evidence for nucleoplasty.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Ongoing and Unpublished Clinical Trials
A search of ClinicalTrials.gov in February 2020 did not identify any ongoing or unpublished trials that would likely influence this review.

CODING
The following codes for treatment and procedures applicable to this policy are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

CPT/HCPCS
62287 Decompression procedure, percutaneous, of nucleus pulposus of intervertebral disc, any method utilizing needle based technique to remove disc material under fluoroscopic imaging or other form of indirect visualization, with discography and/or epidural injection(s) at the treated level(s), when performed, single or multiple levels, lumbar
77002 Fluoroscopic guidance for needle placement (eg, biopsy, aspiration, injection, localization device) (List separately in addition to code for primary procedure)
S2348 Decompression procedure, percutaneous, of nucleus pulposus of intervertebral disc, using radiofrequency energy, single or multiple levels, lumbar

DIAGNOSIS
Experimental / Investigations for all diagnoses related to this policy.

REVISIONS
02-08-2010 The Decompression of the Intervertebral Disc Using Laser or Radiofrequency medical policy is a new freestanding policy developed from the Minimally Invasive Procedures for Spine Pain medical policy which was effective October 18, 2004. The Minimally Invasive Procedures for Spine Pain is no longer an active medical policy.
09-20-2011 Modified Title from:
“Decompression of the Intervertebral Disc Using Laser (Laser Discectomy) or Radiofrequency (DISC Nucleoplasty TM) Energy” to:
“Decompression of the Intervertebral Disc Using Laser Energy (Laser Discectomy) or Radiofrequency Coblation (Nucleoplasty)”
Description section updated
In Policy section
Decompression of the Intervertebral Disc Using Laser Energy (Laser Discectomy) or Radiofrequency Coblation (Nucleoplasty)

REVISIONS

- Revised wording from: “Laser discectomy and DISC nucleoplasty are considered experimental / investigational as techniques of disc decompression and treatment of associated pain.” to: “Laser discectomy and radiofrequency coblation (disc nucleoplasty) are considered experimental / investigational as techniques of disc decompression and treatment of associated pain.”
- No change in policy intent was made.

Rationale section updated
In Coding section:
- Updated nomenclature for CPT code 77002.

Referenced updated.

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
<th>Rationale section</th>
<th>Revised CPT codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-01-2012</td>
<td>In Coding section: Updated nomenclature for CPT code 77002.</td>
<td>Updated</td>
<td>62287</td>
</tr>
<tr>
<td>11-06-2012</td>
<td>Revision section updated</td>
<td>Updated</td>
<td></td>
</tr>
<tr>
<td>10-13-2015</td>
<td>Description section updated</td>
<td>Updated</td>
<td></td>
</tr>
<tr>
<td>01-01-2017</td>
<td>In Coding section: Revised CPT Codes: 62287, 77002</td>
<td>Updated</td>
<td></td>
</tr>
<tr>
<td>05-23-2018</td>
<td>Description section updated</td>
<td>Updated</td>
<td></td>
</tr>
<tr>
<td>09-11-2019</td>
<td>Description section updated</td>
<td>Updated</td>
<td></td>
</tr>
<tr>
<td>08-21-2020</td>
<td>Description section updated</td>
<td>Updated</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

