Title: General Approach to Genetic Testing

DESCRIPTION
There are numerous commercially available genetic tests, including those used to guide intervention in symptomatic or asymptomatic individuals, to identify individuals at risk for future disorders, to predict the prognosis of diagnosed disease, and to predict treatment response. This concept policy offers a framework for evaluating the utility of genetic tests, by classifying the types of genetic tests into clinically relevant categories and developing criteria that can be used for evaluating tests in each category.

Background
The purpose of this evidence review is to provide assistance in evaluating the utility of genetic tests. In providing a framework for evaluating genetic tests, this review will not attempt to determine the clinical utility of genetic testing for specific disorders. Rather, it provides guidelines that can be applied to a wide range of different tests.
This policy applies only if there is not a separate medical policy that outlines specific criteria for testing. If a separate medical policy does exist, then the criteria for medical necessity in that policy supersede the guidelines in this policy.

This evidence review does not include cytogenetic testing (karyotyping), biochemical testing, or molecular testing for infectious disease.

This policy does not address reproductive genetic testing.

The following categories of genetic testing will be addressed in this evidence review:

1. Testing of an affected (symptomatic) individual's germline DNA to benefit the individual
 a. Diagnostic
 b. Prognostic
 c. Therapeutic
2. Testing of DNA from cancer cells of an affected individual to benefit the individual
 a. Diagnostic
 b. Prognostic
 c. Testing to predict treatment response
3. Testing an asymptomatic individual to determine future risk of disease
4. Testing of an affected individual's germline DNA to benefit family member(s)

Definitions

Genetic testing
Genetic testing involves the analysis of chromosomes, DNA (deoxyribonucleic acid), RNA (ribonucleic acid), genes or gene products to detect inherited (germline) or non-inherited (somatic) genetic variants related to disease or health.

Carrier testing
A carrier of a genetic disorder has 1 abnormal allele for a disorder. When associated with an autosomal recessive or X-linked disorder, carriers of the causative mutation are typically unaffected. When associated with an autosomal dominant disorder, the person has 1 normal and 1 mutated copy of the gene, and may be affected with the disorder, may be unaffected but at high risk of developing the disease later in life, or the carrier may remain unaffected because of the sex-limited nature of the disease.

Carrier testing may be offered to individuals: a) who have family members with a genetic condition; b) who have family members who are identified carriers; and c) who are members of ethnic or racial groups known to have a higher carrier rate for a particular condition.
Germline mutations
Mutations that are present in the DNA of every cell of the body, present from the moment of conception. These include cells in the gonads (testes or ova) and could therefore be passed on to offspring.

Somatic mutations
Variations that occur with the passage of time, and are restricted to a specific cell or cells derived from it. If these variations are limited to cells that are not in the gonads, these variations will not be passed on to offspring.

Pharmacogenomics
The study of how a person's genetic makeup affects the body's response to drugs.

Regulatory Status
Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Act (CLIA). Most genetic tests are lab tests available under the auspices of CLIA. Laboratories that offer LDTs must be licensed by CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of these LDTs.
POLICY

Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

A. Genetic testing classified in one of the categories below may be considered medically necessary when all criteria are met for each category, as outlined in the Rationale Section:
 1. Testing of an affected (symptomatic) individual's germline DNA to benefit the individual (excluding reproductive testing)
 a. Diagnostic
 b. Prognostic
 c. Therapeutic
 2. Testing of DNA from cancer cells of an affected individual to benefit the individual
 a. Diagnostic
 b. Prognostic
 c. Testing to predict treatment response
 3. Testing an asymptomatic individual to determine future risk of disease

B. Genetic testing that does not meet the criteria for a specific category is considered experimental / investigational or not medically necessary, according to the standard definitions used for these terms (see Policy Guidelines).

Policy Guidelines
1. For the following category of testing, the benefit of testing is for a family member, rather than the individual being tested. In this category, the criteria developed are for clinical utility.
 a. Testing of an affected individual’s germline DNA to benefit family member(s)
2. Genetic testing is considered experimental / investigational when there is insufficient evidence to determine whether the technology improves health outcomes.
3. Genetic testing is considered not medically necessary when:
 a. testing is not considered standard of care, such as when the clinical diagnosis can be made without the use of a genetic test
 b. testing is not clinically appropriate for the patient's condition, for example, when it would not change diagnosis and/or management. Other situations where testing is not clinically appropriate include, but are not limited to:
 1) testing is performed entirely for nonmedical (e.g., social) reasons
 2) testing is not expected to provide a definitive diagnosis that would obviate the need for further testing
c. testing is performed primarily for the convenience of the patient, physician or other health care provider

d. testing would result in outcomes that are equivalent to outcomes using an alternative strategy, and the genetic test is more costly.

RATIONALE
This evidence review’s most recent update covers the period through December 31, 2015.

General Principles of Genetic Tests
The test should be cleared or approved by the U.S. Food and Drug Administration (FDA) or performed in a Clinical Laboratory Improvement Amendment (CLIA) - certified laboratory.

Peer-reviewed literature on the performance and indications for the test should be available. This evaluation of a genetic test focuses on 3 main principles: (1) analytic validity, (technical accuracy of the test in detecting a mutation that is present or in excluding a mutation that is absent); (2) clinical validity (diagnostic performance of the test [sensitivity, specificity, positive and negative predictive values] in detecting clinical disease); and (3) clinical utility (ie, how the results of the diagnostic test will be used to change management of the patient and whether these changes in management lead to clinically important improvements in health outcomes.1,2

Types of Genetic Tests Addressed in This Policy
1. Testing of an affected (symptomatic) individual’s germline DNA to benefit the individual (excluding reproductive testing)
 a. Diagnostic. To confirm or exclude genetic or heritable mutations in a symptomatic person. This refers to a molecular diagnosis supported by the presence of a known pathologic mutation. For the purposes of genetic testing, a symptomatic person is defined as a person with a clinical phenotype that is correlated with a known pathologic mutation.
 b. Prognostic. To determine or refine estimates of disease natural history or recurrence in patients already diagnosed with disease. To predict natural disease course, eg, aggressiveness, recurrence, risk of death. This type of testing may use gene expression of affected tissue to predict the course of disease, eg, testing breast cancer tissue with Oncotype DX.
 c. Therapeutic. To determine that a particular therapeutic intervention is effective (or ineffective) for an individual patient. To determine the probability of favorable or adverse response to medications. To detect genetic variants that alter risk of treatment response, adverse events, drug metabolism, drug effectiveness, etc. (eg, cytochrome p450 testing). To detect genetic mutations that adversely affect response to exposures in the environment that are ordinarily tolerated, such as G6PD deficiency, genetic disorders of immune function, and aminoacidopathies.

2. Testing of DNA from cancer cells of an affected individual to benefit the individual.
 a. Diagnostic. To determine the origin of a cancer or to determine a clinically relevant subgroup that a cancer falls into.
 b. Prognostic. To determine the risk of progression, recurrence, mortality for a cancer that is already diagnosed.
c. Predictive testing for treatment response. To determine the likelihood that a patient will respond to a targeted cancer therapy that is based on the presence or absence of a specific mutation.

3. Testing an asymptomatic individual to determine future risk of disease. To detect genetic mutations associated with disorders that appear after birth, usually later in life. Intended for individuals with a family history of a genetic disorder, but who themselves have no features of the disorder at the time of testing, in order to determine their risk for developing the disorder.

4. Testing of an affected individual’s germline DNA to benefit family member(s). To focus and direct family testing of asymptomatic relatives, by testing an individual with known disease but in whom the presence or absence of a pathologic mutation has not been determined.

Medical Necessity Criteria
The criteria listed below for medical necessity represent the minimum criteria that must be met in each category to determine that a test is medically necessary. Alternate approaches to grouping these factors are presented in the Appendix. The Appendix tables list all of the factors that are considered for clinical utility, and the Appendix figures group the factors into a branching logic schematic that leads to a decision that the test does or does not meet clinical utility.

Genetic testing is considered medically necessary for a genetic or heritable disorder when the following are met.

For ALL genetic testing, the condition being tested for must have either:
- Reduced life expectancy; OR
- At least moderate to severe morbidity

For the specific categories of testing, the following criteria must also be met:
1. Testing of an affected (symptomatic) individual’s germline DNA to benefit the individual (excluding reproductive testing)
 a. Diagnostic
 i. An association of the marker with the disorder has been established AND
 ii. Symptoms of the disease are present AND
 iii. A definitive diagnosis cannot be made based on history, physical examination, pedigree analysis, standard diagnostic studies/tests AND
 iv. The clinical utility of identifying the mutation has been established (see Appendix):
 1) Leads to changes in clinical management of the condition that improve outcomes; OR
 2) Eliminates the need for further clinical workup or invasive testing; OR
 3) Leads to discontinuation of interventions that are unnecessary and/or ineffective,
 b. Prognostic
 i. An association of the marker with the natural history of the disease has been established AND
ii. Clinical utility of identifying the mutation has been established (see Appendix),
 1) Provides incremental prognostic information above that of standard testing: AND
 2) Reclassifies patients into clinically relevant prognostic categories for which there are different treatment strategies; AND
 3) Reclassification leads to changes in management that improve outcomes.

 c. Therapeutic
 i. Genetic testing identifies variants of a phenotype/metabolic state that relate to different pharmacokinetics, drug efficacy or adverse drug reactions; AND
 ii. Clinical utility of identifying the mutation has been established (see Appendix),
 1) Leads to initiation of effective medication(s) OR
 2) Leads to discontinuation of medications that are ineffective or harmful OR
 3) Leads to clinical meaningful change in dosing of medication that is likely to improve outcomes.

 2. Testing of DNA from cancer cells of an affected individual to benefit the individual
 a. Diagnostic
 i. Genetic testing can establish the cell origin of a cancer when the origin is uncertain following standard work-up; AND
 ii. Clinical utility of identifying the mutation has been established (see Appendix),
 1) Start effective treatment; OR
 2) Discontinue ineffective or harmful treatment

 b. Prognostic
 i. An association of the marker with the natural history of the disease has been established AND
 ii. Clinical utility of identifying the mutation has been established (see Appendix),
 1) Provides incremental prognostic information above that of standard testing: AND
 2) Reclassifies patients into clinically relevant prognostic categories for which there are different treatment strategies; AND
 3) Reclassification leads to changes in management that improve outcomes.

 c. Testing to predict treatment response
 i. Association of a mutation with treatment response to a particular drug has been established AND
 ii. Clinical utility has been established (see Appendix),
 1) The patient is a candidate for targeted drug therapy associated with a specific mutation; AND
 2) There is a clinically meaningful improvement in outcomes when targeted therapy is given for the condition

 3. Testing an asymptomatic individual to determine future risk of disease
 i. An association of the marker with future disorder has been established AND
 ii. Clinical utility has been established (see Appendix)
 1) There is a presymptomatic phase for this disorder in which interventions/surveillance are available; AND
2) Interventions in the presymptomatic phase are likely to improve outcomes:
 a. Prevent/delay onset of disease OR
 b. Detect disease at an earlier stage for which treatment is more effective OR
 c. Discontinuation of interventions that are ineffective or unnecessary.

Clinical Utility Criteria
For the following category, in which the benefit of testing is for another individual, the definition
of medical necessity may not apply. When an individual is tested to benefit a family member, and
there is no benefit for the individual being tested, eligibility for coverage is dependent on
individual plan benefit language. Individual plans may differ as to whether benefit structure
allows testing of an individual to benefit an unaffected family member.

Because of these concerns, the following criteria are considered to be criteria for clinical utility of
testing and not for medical necessity.

4. Testing of an affected individual's germline DNA to benefit family member(s)
 i. An association of the genetic mutation with clinical disease has been established; AND
 ii. Family members are available who may be at risk for the disorder; AND
 iii. The individual tested has a clinical diagnosis of the condition (or represents the family
 member who is most likely to harbor the pathogenic mutation), but genetic testing has
 not been performed; AND
 iv. There is a presymptomatic phase for the disorder in which interventions are available;
 AND
 v. Interventions in the presymptomatic phase are likely to improve outcomes in one of the
 following ways:
 1) Prevent/delay onset of disease
 2) Detect disease at an earlier stage for which treatment is more effective;
 3) Discontinuation of interventions that are ineffective or unneeded.

Genetic Counseling
Genetic counseling is primarily aimed at patients who are at risk for inherited disorders, and
experts recommend formal genetic counseling in most cases when genetic testing for an
inherited condition is considered. The interpretation of the results of genetic tests and the
understanding of risk factors can be very difficult and complex. Therefore, genetic counseling will
assist individuals in understanding the possible benefits and harms of genetic testing, including
the possible impact of the information on the individual's family. Genetic counseling may alter
the utilization of genetic testing substantially and may reduce inappropriate testing. Genetic
counseling should be performed by an individual with experience and expertise in genetic
medicine and genetic testing methods.

Limitations of Genetic Testing
- The testing methods may not detect all of the mutations that may occur in a gene
- Genetic testing may identify variants of unknown clinical significance
- Genetic testing may not necessarily determine the clinical outcome
- Different genes can cause the same disease (genetic heterogeneity)
- A mutation in a gene may cause different phenotypes (phenotypic heterogeneity)
- Some disease-causing genes may not be identified as of yet
- Genetic testing is subject to laboratory error
CODING

The following codes for treatment and procedures applicable to this policy are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

CPT/HCPCS

Tier 1 Molecular Pathology Procedure Codes

81161 DMD (dystrophin) (eg, Duchenne/Becker muscular dystrophy) deletion analysis, and duplication analysis, if performed

81162 BRCA1, BRCA2 (breast cancer 1 and 2) (eg, hereditary breast and ovarian cancer) gene analysis; full sequence analysis and full duplication/deletion analysis

81170 ABL1 (ABL proto-oncogene 1, non-receptor tyrosine kinase) (eg, acquired imatinib tyrosine kinase inhibitor resistance), gene analysis, variants in the kinase domain

81200 ASPA (aspartoacylase) (eg, Canavan disease) gene analysis, common variants (eg, E285A, Y231X)

81201 APC (adenomatous polyposis coli) (eg, familial adenomatosis polyposis [FAP], attenuated FAP) gene analysis; full gene sequence

81202 APC (adenomatous polyposis coli) (eg, familial adenomatosis polyposis [FAP], attenuated FAP) gene analysis; known familial variants

81203 APC (adenomatous polyposis coli) (eg, familial adenomatosis polyposis [FAP], attenuated FAP) gene analysis; duplication/deletion variants

81205 BCKDHB (branched-chain keto acid dehydrogenase E1, beta polypeptide) (eg, Maple syrup urine disease) gene analysis, common variants (eg, R183P, G278S, E422X)

81206 BCR/ABL1 (t(9;22)) (eg, chronic myelogenous leukemia) translocation analysis; major breakpoint, qualitative or quantitative

81207 BCR/ABL1 (t(9;22)) (eg, chronic myelogenous leukemia) translocation analysis; minor breakpoint, qualitative or quantitative

81208 BCR/ABL1 (t(9;22)) (eg, chronic myelogenous leukemia) translocation analysis; other breakpoint, qualitative or quantitative

81209 BLM (Bloom syndrome, RecQ helicase-like) (eg, Bloom syndrome) gene analysis, 2281del6ins7 variant

81210 BRAF (BRAF proto-oncogene serine/threonine kinase) (eg, colon cancer, melanoma), gene analysis, V600E variant(s)

81211 BRCA1, BRCA2 (breast cancer 1 and 2) (eg, hereditary breast and ovarian cancer) gene analysis; full sequence analysis and common duplication/deletion variants in BRCA1 (ie, exon 13 del 3.835kb, exon 13 dup 6kb, exon 14-20 del 26kb, exon 22 del 510bp, exon

81212 BRCA1, BRCA2 (breast cancer 1 and 2) (eg, hereditary breast and ovarian cancer) gene analysis; 185delAG, 5385insC, 6174delT variants

81213 BRCA1, BRCA2 (breast cancer 1 and 2) (eg, hereditary breast and ovarian cancer) gene analysis; uncommon duplication/deletion variants

81214 BRCA1 (breast cancer 1) (eg, hereditary breast and ovarian cancer) gene analysis; full sequence analysis and common duplication/deletion variants (ie, exon 13 del 3.835kb, exon 13 dup 6kb, exon 14-20 del 26kb, exon 22 del 510bp, exon 8-9 del 7.1kb)
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81215</td>
<td>BRCA1 (breast cancer 1) (eg, hereditary breast and ovarian cancer) gene analysis; known familial variant</td>
</tr>
<tr>
<td>81216</td>
<td>BRCA2 (breast cancer 2) (eg, hereditary breast and ovarian cancer) gene analysis; full sequence analysis</td>
</tr>
<tr>
<td>81217</td>
<td>BRCA2 (breast cancer 2) (eg, hereditary breast and ovarian cancer) gene analysis; known familial variant</td>
</tr>
<tr>
<td>81218</td>
<td>CEBPA (CCAAT/enhancer binding protein [C/EBP], alpha) (eg, acute myeloid leukemia), gene analysis, full gene sequence</td>
</tr>
<tr>
<td>81219</td>
<td>CALR (calreticulin) (EG, myeloproliferative disorders), gene analysis, common variants in exon 9</td>
</tr>
<tr>
<td>81220</td>
<td>CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; common variants (eg, ACMG/ACOG guidelines)</td>
</tr>
<tr>
<td>81221</td>
<td>CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; known familial variants</td>
</tr>
<tr>
<td>81222</td>
<td>CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; duplication/deletion variants</td>
</tr>
<tr>
<td>81223</td>
<td>CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; full sequence</td>
</tr>
<tr>
<td>81224</td>
<td>CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; intron 8 poly-T analysis (eg, male infertility)</td>
</tr>
<tr>
<td>81228</td>
<td>Cytogenomic constitutional (genome-wide) microarray analysis; interrogation of genomic regions for copy number variants (eg, Bacterial Artificial Chromosome [BAC] or oligo-based comparative genomic hybridization [CGH] microarray analysis)</td>
</tr>
<tr>
<td>81229</td>
<td>Cytogenomic constitutional (genome-wide) microarray analysis; interrogation of genomic regions for copy number and single nucleotide polymorphism (SNP) variants for chromosomal abnormalities</td>
</tr>
<tr>
<td>81235</td>
<td>EGFR (epidermal growth factor receptor) (eg, non-small cell lung cancer) gene analysis, common variants (eg, exon 19 LREA deletion, L858R, T790M, G719A, G719S, L861Q)</td>
</tr>
<tr>
<td>81240</td>
<td>F2 (prothrombin, coagulation factor II) (eg, hereditary hypercoagulability) gene analysis, 20210G>A variant</td>
</tr>
<tr>
<td>81241</td>
<td>F5 (coagulation Factor V) (eg, hereditary hypercoagulability) gene analysis, Leiden variant</td>
</tr>
<tr>
<td>81242</td>
<td>FANCC (Fanconi anemia, complementation group C) (eg, Fanconi anemia, type C) gene analysis, common variant (eg, IVS4+4A>T)</td>
</tr>
<tr>
<td>81243</td>
<td>FMR1 (Fragile X mental retardation 1) (eg, fragile X mental retardation) gene analysis; evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>81244</td>
<td>FMR1 (Fragile X mental retardation 1) (eg, fragile X mental retardation) gene analysis; characterization of alleles (eg, expanded size and methylation status)</td>
</tr>
<tr>
<td>81245</td>
<td>FLT3 (fms-related tyrosine kinase 3) (eg, acute myeloid leukemia), gene analysis, internal tandem duplication (ITD) variants (ie, exons 14, 15)</td>
</tr>
</tbody>
</table>
81246 FLT3 (fms-related tyrosine kinase 3) (eg, acute myeloid leukemia), gene analysis; tyrosine kinase domain (TKD) variants (eg, D835, I836)
81250 G6PC (glucose-6-phosphatase, catalytic subunit) (eg, Glycogen storage disease, Type 1a, von Gierke disease) gene analysis, common variants (eg, R83C, Q347X)
81251 GBA (glucosidase, beta, acid) (eg, Gaucher disease) gene analysis, common variants (eg, N370S, S44G, L444P, 158S+1G>A)
81252 GJB2 (gap junction protein, beta 2, 26kDa, connexin 26) (eg, nonsyndromic hearing loss) gene analysis; full gene sequence
81253 GJB2 (gap junction protein, beta 2, 26kDa; connexin 26) (eg, nonsyndromic hearing loss) gene analysis; known familial variants
81254 GJB6 (gap junction protein, beta 6, 30kDa, connexin 30) (eg, nonsyndromic hearing loss) gene analysis, common variants (eg, 309kb [del(GJB6-D13S1830)] and 232kb [del(GJB6-D13S1854)])
81255 HEXA (hexosaminidase A [alpha polypeptide]) (eg, Tay-Sachs disease) gene analysis, common variants (eg, 1278insTATC, 1421+1G>C, G269S)
81256 HFE (hemochromatosis) (eg, hereditary hemochromatosis) gene analysis, common variants (eg, C282Y, H63D)
81257 HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassemia, Hb Bart hydrops fetalis syndrome, HbH disease), gene analysis, for common deletions or variant (eg, Southeast Asian, Thai, Filipino, Mediterranean, alpha3.7, alpha4.2, alpha20.5, and Co)
81258 IKBKAP (inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase complex-associated protein) (eg, familial dysautonomia) gene analysis, common variants (eg, 2507+6T>C, R696P)
81259 IGH@ (Immunoglobulin heavy chain locus) (eg, leukemias and lymphomas, B-cell), gene rearrangement analysis to detect abnormal clonal population(s); amplified methodology (eg, polymerase chain reaction)
81260 IGH@ (Immunoglobulin heavy chain locus) (eg, leukemias and lymphomas, B-cell), gene rearrangement analysis to detect abnormal clonal population(s); direct probe methodology (eg, Southern blot)
81261 IGH@ (Immunoglobulin heavy chain locus) (eg, leukemia and lymphoma, B-cell), variable region somatic mutation analysis
81262 IGK@ (Immunoglobulin kappa light chain locus) (eg, leukemia and lymphoma, B-cell), gene rearrangement analysis, evaluation to detect abnormal clonal population(s)
81263 Comparative analysis using Short Tandem Repeat (STR) markers; patient and comparative specimen (eg, pre-transplant recipient and donor germline testing, post-transplant non-hematopoietic recipient germline [eg, buccal swab or other germline tissue sample]
81264 Comparative analysis using Short Tandem Repeat (STR) markers; each additional specimen (eg, additional cord blood donor, additional fetal samples from different cultures, or additional zygosity in multiple birth pregnancies) (List separately in addition to code for primary procedure)
81265 Chimerism (engraftment) analysis, post transplantation specimen (eg, hematopoietic stem cell), includes comparison to previously performed baseline analyses; without cell selection
81266 Chimerism (engraftment) analysis, post transplantation specimen (eg, hematopoietic stem cell), includes comparison to previously performed baseline analyses; with cell selection (eg, CD3, CD33), each cell type
| 81270 | JAK2 (Janus kinase 2) (eg, myeloproliferative disorder) gene analysis, p.Val617Phe (V617F) variant |
| 81272 | KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) (eg, mastocytosis), gene analysis, D816 variant(s) |
| 81273 | KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) (eg, gastrointestinal stromal tumor [GIST], acute myeloid leukemia, melanoma), gene analysis, targeted sequence analysis (eg, exons 8, 11, 13, 17, 18) |
| 81275 | KRAS (Kirsten rat sarcoma viral oncogene homolog) (eg, carcinoma) gene analysis; variants in exon 2 (eg, codons 12 and 13) |
| 81276 | KRAS (Kirsten rat sarcoma viral oncogene homolog) (eg, carcinoma) gene analysis; additional variant(s) (eg, codon 61, codon 146) |
| 81278 | MGMT (O-6-methylguanine-DNA methyltransferase) (eg, glioblastoma multiforme), methylation analysis |
| 81287 | MLH1 (mutL homolog 1, colon cancer, nonpolyposis type 2) (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) gene analysis; promoter methylation analysis |
| 81290 | MCOLN1 (mucolipin 1) (eg, Mucolipidosis, type IV) gene analysis, common variants (eg, IVS3-2A>G, del6.4kb) |
| 81291 | MTHFR (5,10-methylenetetrahydrofolate reductase) (eg, hereditary hypercoagulability) gene analysis, common variants (eg, 677T, 1298C) |
| 81292 | MLH1 (mutL homolog 1, colon cancer, nonpolyposis type 2) (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) gene analysis; full sequence analysis |
| 81293 | MLH1 (mutL homolog 1, colon cancer, nonpolyposis type 2) (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) gene analysis; known familial variants |
| 81294 | MLH1 (mutL homolog 1, colon cancer, nonpolyposis type 2) (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) gene analysis; duplication/deletion variants |
| 81295 | MSH2 (mutS homolog 2, colon cancer, nonpolyposis type 1) (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) gene analysis; full sequence analysis |
| 81296 | MSH2 (mutS homolog 2, colon cancer, nonpolyposis type 1) (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) gene analysis; known familial variants |
| 81297 | MSH2 (mutS homolog 2, colon cancer, nonpolyposis type 1) (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) gene analysis; duplication/deletion variants |
| 81298 | MSH6 (mutS homolog 6 [E. coli]) (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) gene analysis; full sequence analysis |
| 81299 | MSH6 (mutS homolog 6 [E. coli]) (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) gene analysis; known familial variants |
| 81300 | MSH6 (mutS homolog 6 [E. coli]) (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) gene analysis; duplication/deletion variants |
| 81301 | Microsatellite instability analysis (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) of markers for mismatch repair deficiency (eg, BAT25, BAT26), includes comparison of neoplastic and normal tissue, if performed |
| 81302 | MECP2 (methyl CpG binding protein 2) (eg, Rett syndrome) gene analysis; full sequence analysis |
| 81303 | MECP2 (methyl CpG binding protein 2) (eg, Rett syndrome) gene analysis; known familial variant |
81304 MECP2 (methyl CpG binding protein 2) (eg, Rett syndrome) gene analysis; duplication/deletion variants
81310 NPM1 (nucleophosmin) (eg, acute myeloid leukemia) gene analysis, exon 12 variants
81311 NRAS (neuroblastoma RAS viral [v-ras] oncogene homolog) (eg, colorectal carcinoma), gene analysis, variants in exon 2 (eg, codons 12 and 13) and exon 3 (eg, codon 61)
81313 PCA3/KLK3 (prostate cancer antigen 3 [non-protein coding]/kallikrein-related peptidase 3 [prostate specific antigen]) ratio (eg, prostate cancer)
81314 PDGFRA (platelet-derived growth factor receptor, alpha polypeptide) (eg, gastrointestinal stromal tumor [GIST]), gene analysis, targeted sequence analysis (eg, exons 12, 18)
81315 PML/RARalpha, (t(15;17)), (promyelocytic leukemia/retinoic acid receptor alpha) (eg, promyelocytic leukemia) translocation analysis; common breakpoints (eg, intron 3 and intron 6), qualitative or quantitative
81316 PML/RARalpha, (t(15;17)), (promyelocytic leukemia/retinoic acid receptor alpha) (eg, promyelocytic leukemia) translocation analysis; single breakpoint (eg, intron 3, intron 6 or exon 6), qualitative or quantitative
81317 PMS2 (postmeiotic segregation increased 2 [S. cerevisiae]) (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) gene analysis; full sequence analysis
81318 PMS2 (postmeiotic segregation increased 2 [S. cerevisiae]) (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) gene analysis; known familial variants
81319 PMS2 (postmeiotic segregation increased 2 [S. cerevisiae]) (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) gene analysis; duplication/deletion variants
81321 PTEN (phosphatase and tensin homolog) (eg, Cowden syndrome, PTEN hamartoma tumor syndrome) gene analysis; full sequence analysis
81322 PTEN (phosphatase and tensin homolog) (eg, Cowden syndrome, PTEN hamartoma tumor syndrome) gene analysis; known familial variant
81323 PTEN (phosphatase and tensin homolog) (eg, Cowden syndrome, PTEN hamartoma tumor syndrome) gene analysis; duplication/deletion variant
81324 PMP22 (peripheral myelin protein 22) (eg, Charcot-Marie-Tooth, hereditary neuropathy with liability to pressure palsies) gene analysis; duplication/deletion analysis
81325 PMP22 (peripheral myelin protein 22) (eg, Charcot-Marie-Tooth, hereditary neuropathy with liability to pressure palsies) gene analysis; full sequence analysis
81326 PMP22 (peripheral myelin protein 22) (eg, Charcot-Marie-Tooth, hereditary neuropathy with liability to pressure palsies) gene analysis; known familial variant
81330 SMPD1 (sphingomyelin phosphodiesterase 1, acid lysosomal) (eg, Niemann-Pick disease, Type A) gene analysis, common variants (eg, R496L, L302P, fsP330)
81331 SNRPN/UBE3A (small nuclear ribonucleoprotein polypeptide N and ubiquitin protein ligase E3A) (eg, Prader-Willi syndrome and/or Angelman syndrome), methylation analysis
81332 SERPINA1 (serpin peptidase inhibitor, clade A, alpha-1 antiproteinase, antitrypsin, member 1) (eg, alpha-1-antitrypsin deficiency), gene analysis, common variants (eg, *S and *Z)
81340 TRB@ (T cell antigen receptor, beta) (eg, leukemia and lymphoma), gene rearrangement analysis to detect abnormal clonal population(s); using amplification methodology (eg, polymerase chain reaction)
81341 TRB@ (T cell antigen receptor, beta) (eg, leukemia and lymphoma), gene rearrangement analysis to detect abnormal clonal population(s); using direct probe methodology (eg, Southern blot)

81342 TRG@ (T cell antigen receptor, gamma) (eg, leukemia and lymphoma), gene rearrangement analysis, evaluation to detect abnormal clonal population(s)

81355 VKORC1 (vitamin K epoxide reductase complex, subunit 1) (eg, warfarin metabolism), gene analysis, common variant(s) (eg, -1639G>A, c.173+1000C>T)

Tier 2 Molecular Pathology Procedure Codes

81400 Molecular pathology procedure, Level 1 (eg, identification of single germline variant [eg, SNP] by techniques such as restriction enzyme digestion or melt curve analysis)

81401 Molecular pathology procedure, Level 2 (eg, 2-10 SNPs, 1 methylated variant, or 1 somatic variant [typically using non-sequencing target variant analysis], or detection of a dynamic mutation disorder/triplet repeat)

81402 Molecular pathology procedure, Level 3 (eg, >10 SNPs, 2-10 methylated variants, or 2-10 somatic variants [typically using non-sequencing target variant analysis], immunoglobulin and T-cell receptor gene rearrangements, duplication/deletion variants of 1 exon, loss of heterozygosity [LOH], uniparental disomy [UPD])

81403 Molecular pathology procedure, Level 4 (eg, analysis of single exon by DNA sequence analysis, analysis of >10 amplicons using multiplex PCR in 2 or more independent reactions, mutation scanning or duplication/deletion variants of 2-5 exons)

81404 Molecular pathology procedure, Level 5 (eg, analysis of 2-5 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 6-10 exons, or characterization of a dynamic mutation disorder/triplet repeat by Southern blot analysis)

81405 Molecular pathology procedure, Level 6 (eg, analysis of 6-10 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 11-25 exons, regionally targeted cytogenomic array analysis)

81406 Molecular pathology procedure, Level 7 (eg, analysis of 11-25 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 26-50 exons, cytogenomic array analysis for neoplasia)

81407 Molecular pathology procedure, Level 8 (eg, analysis of 26-50 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of >50 exons, sequence analysis of multiple genes on one platform)

81408 Molecular pathology procedure, Level 9 (eg, analysis of >50 exons in a single gene by DNA sequence analysis)

81479 Unlisted molecular pathology procedure

- Effective in 2013, if a specific analyte is listed in codes 81200-81355 or 81400-81408, that CPT code would be reported.
- If the specific analyte is not listed in the more specific CPT codes, unlisted code 81479 would be reported.

Diagnoses

Diagnosis coding would depend on the condition for which the testing is being performed, if the test is being performed as screening or carrier testing, and any family history of the condition.
REVISIONS

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02-07-2014</td>
<td>Policy added to the bcbsks.com web site on 01-08-2014 for an effective date of 02-07-2014.</td>
</tr>
<tr>
<td></td>
<td>In Policy section:</td>
</tr>
<tr>
<td></td>
<td>• In Item A removed “1. Diagnostic testing, 2. Risk assessment, 3. Prognostic testing, 4. Genetic variants that alter response to treatment or to an environmental factor”</td>
</tr>
</tbody>
</table>
| | • In Item A added “1. Testing of an affected (symptomatic) individual’s germline DNA to benefit the individual (excluding reproductive testing)
 a. Diagnostic b. Prognostic c. Therapeutic
 2. Testing of DNA from cancer cells of an affected individual to benefit the individual
 a. Diagnostic b. Prognostic c. Testing to predict treatment response
 3. Testing an asymptomatic individual to determine future risk of disease” |
| | • Policy Guidelines updated |
| | Rationale section updated |
| | In Coding section: |
| | • Added CPT Codes: 81162, 81170, 81218, 81219, 81272, 81273, 81276, 81311, 81314 (Effective January 1, 2016) |
| | • Added CPT Codes: 81161, 81246, 81287, 81288, 81313, 81479 |
| | • Revised CPT Codes: 81210, 81275, 81355 (Effective January 1, 2016) |
| | • Updated Coding notations |
| | Appendix section added to reflect the categories of diagnostic testing, risk assessment, prognostic testing, and pharmacogenomics. |
| 01-01-2017 | In Coding section: |
| | • Removed CPT Codes: 81280, 81281, 81282 (Effective December 31, 2016) |

REFERENCES

APPENDIX

Appendix 1. Table for Categorizing Which Type of Testing Is Being Addressed in Policies

The following table will be used on individual genetic policies to indicate which categories are addressed in the policy, including both general genetic testing and reproductive genetic testing.

<table>
<thead>
<tr>
<th>Category</th>
<th>Addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Testing of an affected individual’s germline to benefit the individual</td>
<td></td>
</tr>
<tr>
<td>1a. Diagnostic</td>
<td></td>
</tr>
<tr>
<td>1b. Prognostic</td>
<td></td>
</tr>
<tr>
<td>1c. Therapeutic</td>
<td></td>
</tr>
<tr>
<td>2. Testing cancer cells from an affected individual to benefit the individual</td>
<td></td>
</tr>
<tr>
<td>2a. Diagnostic</td>
<td></td>
</tr>
<tr>
<td>2b. Prognostic</td>
<td></td>
</tr>
<tr>
<td>2c. Therapeutic</td>
<td></td>
</tr>
<tr>
<td>3. Testing an asymptomatic patient to determine future risk of disease</td>
<td></td>
</tr>
<tr>
<td>4. Testing of an affected individual’s germline to benefit family members</td>
<td></td>
</tr>
<tr>
<td>5. Reproductive testing</td>
<td></td>
</tr>
<tr>
<td>5a. Carrier testing: preconception</td>
<td></td>
</tr>
<tr>
<td>5b. Carrier testing: prenatal</td>
<td></td>
</tr>
<tr>
<td>5c. In utero testing: aneuploidy</td>
<td></td>
</tr>
<tr>
<td>5d. In utero testing: mutations</td>
<td></td>
</tr>
<tr>
<td>5e. In utero testing: other</td>
<td></td>
</tr>
<tr>
<td>5f. Preimplantation testing with IVF</td>
<td></td>
</tr>
</tbody>
</table>

Appendix 2. Approach to Determining Clinical Utility for Genetic Testing

Direct Evidence
If direct evidence is available on the impact of testing on outcomes, this evidence takes precedence. Examples of direct evidence would be:
- Trial comparing outcomes with use of the test versus outcomes without use of the test
- Associational study of genetic testing with outcomes

Indirect Evidence
When direct evidence is not available, indirect evidence should be evaluated. Indirect evidence is evidence that addresses one or more components of a chain of evidence, but does not itself connect the intervention with the outcome.

An example of indirect evidence is the accuracy of the genetic test for diagnosing the clinical condition, ie, clinical sensitivity and specificity. If improved accuracy leads to improved diagnosis of the disorder, and if more accurate diagnosis leads to management changes that improve outcomes, then clinical utility has been established.

Many of these disorders are rare, and high-quality evidence on the efficacy of treatment for the disorder is often lacking. This is particularly true for aspects of management such as increased surveillance for complications, ancillary treatments (physical therapy, occupational therapy, etc.), and referrals to specialists. When evidence on outcomes is lacking, a consideration may be given...
as to whether these aspects of care are considered standard-of-care for that disorder, especially when they are part of guidelines by authoritative bodies.

There are a number of factors that influence the strength of indirect evidence that is needed to determine whether health outcomes are improved. None of these factors are by themselves determinative of whether genetic testing should be performed, but they may be important determinants of the potential clinical utility of testing. Some of these considerations are as follows:

1. **Factors impacting the strength of indirect evidence for diagnostic testing**
 (Categories 1a, 2a)

 Disease Characteristics
 - Is life expectancy reduced with this disorder?
 - What is the level of physical and/or psychosocial morbidity (disability) associated with the disorder?
 - Severe morbidity/disability
 - Moderate morbidity/disability
 - Minor or no morbidity/disability

 Impact of Genetic Test on Diagnosis
 - Can genetic testing confirm the suspected diagnosis?
 - Can the diagnosis be confirmed by alternate methods without genetic testing?
 - Disorder is defined by the presence of genetic mutation
 - Genetic test is one of several factors contributing to diagnosis
 - Unable to make diagnosis without genetic test in some patients
 - Can genetic testing rule out the disorder?
 - Can genetic testing eliminate the need for further clinical work-up?
 - Is this a disorder in which the diagnosis can be difficult, and the patient may be subjected to long and complicated work-ups?

 Impact of Genetic Test on Management
 - Does confirmation of diagnosis by genetic testing lead to improved outcomes?
 - Initiation of effective treatment
 - Discontinuation of ineffective treatment
 - Does confirmation of diagnosis by genetic testing lead to the Initiation of other management changes with uncertain impact on outcomes (referrals to specialists and/or ancillary care, initiate screening, etc.)
 - Does confirmation of diagnosis by genetic testing lead to initiation of other management changes that are considered “standard of care” treatment for disorder

 Impact on Health Outcomes
 - Is there a definite improvement in health outcomes with genetic testing? For example:
 - Diagnosis cannot be made without genetic testing, and confirmation of diagnosis leads to initiation of effective treatment
 - Is there a possible, but not definite, improvement in health outcomes with genetic testing? For example:
 - Diagnosis cannot be made without genetic testing, and confirmation of diagnosis leads to management changes with uncertain impact on outcomes
- Are there significant barriers to research, such as rarity of the disorder?
- What is the impact of genetic testing on lifestyle factors?
 - Employment/occupational decision making
 - Leisure activities
 - Reproductive decision maker

Appendix Table 1. Factors Influencing the Strength of an Indirect Chain of Evidence on Clinical Utility: Testing Categories 1a, 2a

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Disease Characteristics</th>
<th>Impact on Diagnosis</th>
<th>Impact on Management</th>
<th>Impact on Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Factors impacting the strength of indirect evidence for assessing risk of future disease in asymptomatic individuals (Category 3)

Disease Characteristics
- Is life expectancy reduced with this disorder?
- What is the level of physical and/or psychosocial morbidity (disability) associated with the disorder?
 - Severe morbidity/disability
 - Moderate morbidity/disability
 - Minor or no morbidity/disability
- Is there a presymptomatic phase during which a clinical diagnosis cannot be made?

Impact of Genetic Test on Defining Risk of Disease
- Can genetic testing determine the risk of subsequent disease in at least a substantial proportion of the population tested?
- Is there a known mutation in the family?
- Is the penetrance of the genetic mutation known?
- Are there other factors that impact the clinical expression of disease?

Impact of Genetic Test on Management
- Does confirmation of risk lead to interventions that are indicated for this condition in the presymptomatic phase
 - Interventions that prevent or delay disease onset
 - Surveillance for manifestations or complications of disease
- Does confirmation of risk by a positive genetic test lead to the initiation of other management changes that may or may not lead to improved outcomes (referrals to specialists and/or ancillary care, initiate screening, etc.)
- Does a negative test confirm a lack of risk for the disease, and does this lead to “turning off” interventions, such as surveillance, that would otherwise be performed?
- Is it likely that knowledge of mutation status will lead to alterations in reproductive decision making?

Impact on Health Outcomes

- Is there a definite improvement in health outcomes with genetic testing? For example:
 - Risk assessment cannot be made without genetic testing, and confirmation of risk leads to initiation of effective preventive interventions that delay onset of disease
- Is there a possible, but not definite, improvement in health outcomes with genetic testing? For example:
 - Risk assessment cannot be made without genetic testing, and confirmation of risk leads to management changes with uncertain impact on outcomes
- Are there significant barriers to research, such as rarity of the disorder?
- What is the impact of genetic testing on lifestyle factors?
 - Employment/occupational decision making
 - Leisure activities
 - Reproductive decision maker

Appendix Table 2. Factors Influencing the Strength of Indirect Evidence for Risk Assessment Testing: Testing Category 3

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Disease Characteristics</th>
<th>Impact on Defining Risk</th>
<th>Impact on Management</th>
<th>Impact on Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortened LE</td>
<td>Severe morbidity/disability</td>
<td>Determines risk in substantial proportion of patients</td>
<td>Initiate effective interventions in presymptomatic phase</td>
<td>Definite improved health outcomes</td>
</tr>
<tr>
<td>Severe morbidity/disability</td>
<td>Moderate morbidity/disability</td>
<td>Known mutation in family</td>
<td>Other management changes with uncertain impact</td>
<td>Possible impact on outcomes, data lacking</td>
</tr>
<tr>
<td>Moderate morbidity/disability</td>
<td>Minor or no morbidity/disability</td>
<td>Penetration is well known</td>
<td>Negative test turns off interventions</td>
<td>Barriers to research</td>
</tr>
<tr>
<td>Minor or no morbidity/disability</td>
<td>Has presymptomatic stage</td>
<td>There are other factors that impact clinical expression</td>
<td>Likely to impact reproductive decision making</td>
<td>Impact on lifestyle factors</td>
</tr>
</tbody>
</table>

3. **Factors influencing the strength of indirect evidence for prognosis testing (Testing categories 1b, 2b)**

Disease Characteristics

- Is life expectancy reduced with this disorder?
- What is the level of physical and/or psychosocial morbidity (disability) associated with the disorder?
 - Severe morbidity/disability
Impact of Genetic Test on Prognosis
- Does the genetic test have an association with prognosis of disease?
- Does genetic testing lead to an incremental improvement in prognosis above that which can be done by usual testing?
- Does the genetic testing allow classification of patients into clinically credible prognostic groups?
 - Have these prognostic groups been defined clinically a priori?

Impact of Genetic Test on Management
- Are different prognostic groups associated with different treatment interventions?
 - Type of intervention
 - Timing of intervention
- Has treatment according to risk category been demonstrated to improve outcomes?
- Is treatment according to risk category considered standard of care for this disorder?

Impact on Health Outcomes
- Is there a definite improvement in health outcomes with genetic testing? For example:
 - Reclassification by prognosis leads to change in management that is known to be effective for the condition
- Is there a possible, but not definite, improvement in health outcomes with genetic testing? For example:
 - Reclassification by prognosis leads to changes in management with uncertain impact on outcomes
- Are there significant barriers to research, such as rarity of the disorder?
- What is the impact of testing on lifestyle factors?
 - Employment/occupational decision making
 - Leisure activities
 - Reproductive decision maker

Appendix Table 3. Factors Influencing the Strength of Indirect Evidence: Testing Categories 1b, 2b

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Disease Characteristics</th>
<th>Impact on Prognosis</th>
<th>Impact on Management</th>
<th>Impact on Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shortened LE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severe morbidity/disability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate morbidity/disability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor or no morbidity/disability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutation associated with prognosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incremental improvement above clinical measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contributes to ability to make diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clinically credible prognostic groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prognostic groups have different treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment by prognostic groups improve outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment by prognostic group is standard of care</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Definite improved health outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Possible impact on outcomes, data lacking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barriers to research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impact on lifestyle factors</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. **Factors influencing the strength of indirect evidence for genetic variants that alter response to treatment (Testing categories 1c, 2c)**

Disease Characteristics
- Is life expectancy reduced with this disorder?
- What is the level of physical and/or psychosocial morbidity (disability) associated with the disorder?
 - Severe morbidity/disability
 - Moderate morbidity/disability
 - Minor or no morbidity/disability
- Is there effective pharmacologic therapy for this disorder?

Impact of Genetic Testing on Assessing Response to Treatment
- Can genetic testing define variants that are associated with different pharmacokinetics of drug metabolism?
- Are these changes in drug metabolism clinically important?
 - Variants have been associated with clinically significant differences in outcomes of treatment
- Are there genetic variants that are associated with increased risk for adverse effects?

Impact of Genetic Test on Pharmacologic Management
- Does identification of genetic variants lead to changes in pharmacologic management?
 - Initiation of alternate agents
 - Discontinuation ineffective agents
 - Changes in dosing

Impact on Health Outcomes
- Is there a definite improvement in health outcomes with genetic testing? For example:
 - Identification of variants leads to initiation of medications that are known to be effective
- Is there a possible, but not definite, improvement in health outcomes with genetic testing? For example:
 - Identification of variants leads to change in pharmacologic management with uncertain impact on outcomes
- Are there significant barriers to research, such as rarity of the disorder?
Appendix Table 4. Factors Influencing the Strength of Indirect Evidence: Genetic Variants That Alter Response to Treatment (Testing Categories 1c, 2c)

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Disease Characteristics</th>
<th>Impact on Response to Treatment</th>
<th>Impact on Management</th>
<th>Impact on Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortened LE</td>
<td>Severe morbidity/disability</td>
<td>Define variants with different pharmacokinetics</td>
<td>Different pharmacokinetics are clinically important.</td>
<td>Variants lead to differences in outcomes</td>
</tr>
<tr>
<td></td>
<td>Moderate morbidity/disability</td>
<td></td>
<td>Variants lead to differences in outcomes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor or no morbidity/disability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effective pharmacologic therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Different pharmacokinetics are clinically important.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants lead to differences in outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants with increased risk for adverse effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effective pharmacologic therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Different pharmacokinetics are clinically important.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants lead to differences in outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants with increased risk for adverse effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effective pharmacologic therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Different pharmacokinetics are clinically important.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants lead to differences in outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants with increased risk for adverse effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effective pharmacologic therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Different pharmacokinetics are clinically important.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants lead to differences in outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants with increased risk for adverse effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effective pharmacologic therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Different pharmacokinetics are clinically important.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants lead to differences in outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants with increased risk for adverse effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effective pharmacologic therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Different pharmacokinetics are clinically important.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants lead to differences in outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants with increased risk for adverse effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effective pharmacologic therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Different pharmacokinetics are clinically important.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants lead to differences in outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants with increased risk for adverse effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effective pharmacologic therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Different pharmacokinetics are clinically important.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants lead to differences in outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variants with increased risk for adverse effects</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix Figure 1a. Diagnostic Testing Schematic of an Affected Individual’s Germline to Benefit the Individual

1a. Diagnostic

Is testing intended to confirm a suspected diagnosis, or to evaluate the origin of nonspecific symptoms?

- Confirm a suspected diagnosis
- Investigate the origin of nonspecific symptoms

Does this disorder have reduced life expectancy?

- Yes
- No

Does this disorder have at least moderate or severe morbidity?

- Yes
- No

Does this disorder defined by a genetic abnormality (i.e. no other way to make the diagnosis)?

- Yes
- No

Can diagnosis be made without genetic testing?

- Does not meet CU Criteria
- Meets CU Criteria

Is this a condition in which a complicated workup is expected, and genetic testing can eliminate the need for further clinical workup and/or invasive testing?

- Meets CU Criteria
- Does not meet CU Criteria

Does confirmation of the diagnosis by genetic testing lead to changes in management?

- Meets CU Criteria
- Does not meet CU Criteria

Is there evidence that changes in management improve health outcomes?

- Yes (Start effective treatment or stop ineffective treatment)
- Uncertain (Start or stop standard of care treatment without supporting evidence, or other management changes with uncertain impact on outcomes)
- No (Unlikely that management changes improve outcomes)

Contains Public Information
Appendix Figure 1b. Prognostic Testing of an Affected Individual’s Germline to Benefit the Individual

1. Testing an affected individual’s germline to benefit the individual

1b. Prognostic

Does this disorder have reduced life expectancy?

Yes

Does this disorder have at least moderate or severe morbidity?

Yes

Does genetic testing provide incremental prognostic information above that provided by standard testing?

Yes

Does testing reclassify patients into clinically relevant prognostic categories for which there are different treatment strategies?

Yes

Does treatment according to the defined prognostic categories improve outcomes?

Yes

Meets CU Criteria

No

Uncertain impact on outcomes, but standard of care

Indeterminate, consider clinical vetting

No

Does not meet CU Criteria
Appendix Figure 2a. Diagnostic Testing of DNA Cells From Cancer Cells of an Affected Individual to Benefit the Individual

2. Testing of DNA from cancer cells of an affected individual to benefit the individual

2a. Diagnostic

Does this disorder have reduced life expectancy?

Yes → Does not meet CU Criteria

No → Does this disorder have at least moderate or severe morbidity?

Yes → Can the genetic test accurately identify the cell origin of a cancer when the origin is uncertain following standard workup?

Yes → Does the test diagnose clinically important subgroups that are associated with different treatment strategies?

Yes → Does identification of cell origin or clinically important subgroup lead to changes in management that improve outcomes?

Yes (Start effective treatment and discontinue ineffective treatment) → Meets CU Criteria

Uncertain impact on outcomes → Indeterminate, consider clinical setting

Unlikely to improve outcomes → Does not meet CU Criteria

No → Does not meet CU Criteria
Appendix Figure 2b. Prognostic Testing of DNA From Cancer Cells of an Affected Individual to Benefit the Individual

2. Testing of DNA from cancer cells of an affected individual to benefit the individual

2b. Prognostic

Does this disorder have reduced life expectancy?

- Yes
- No

Does this disorder have at least moderate or severe morbidity?

- Yes
- No

Does genetic testing provide incremental prognostic information above that provided by standard testing?

- Yes
- No

Does testing reclassify patients into clinically relevant prognostic categories for which there are different treatment strategies?

- Yes
- No

Does treatment according to the defined prognostic categories improve outcomes?

- Yes
- Uncertain impact on outcomes, but standard of care
- No

Meets CU Criteria

Indeterminate, consider clinical vetting

Does not meet CU Criteria
Appendix Figure 2c. Therapeutic Testing of Cancer Cells of an Affected Individual to Benefit the Individual
Appendix Figure 3. Testing an Asymptomatic Individual to Determine Future Risk of Disease

3. Testing an asymptomatic individual to determine future risk of disease

Does this disorder have reduced life expectancy?

Yes

Does this disorder have at least moderate or severe morbidity?

Yes

Does not meet CU Criteria

No

Can testing identify genetic markers indicating future risk of disease?

Yes

Is penetrance for these markers known, and are other factors that affect clinical expression well understood?

Yes

Is there a presymptomatic phase for this disorder in which interventions are available?

Yes

Interventions that improve outcomes:
- Prevent/delay onset of disease
- Detect disease at earlier stage that has more effective treatment
- Discontinue surveillance or screening interventions

Meets CU Criteria

Indeterminate, consider clinical vetting

Does not meet CU Criteria

No

No

Does not meet CU Criteria
Appendix Figure 4. Testing an Affected Individual’s Determine DNA to Benefit Family Member(s)

4. Testing of an affected individual’s germline DNA to benefit family member(s)

- Does this disorder have reduced life expectancy?
 - Yes
 - Does this disorder have at least moderate or severe morbidity?
 - Yes
 - Can testing identify a mutation that has a hereditary pattern and is likely to be passed on to offspring?
 - Yes
 - Is penetrance for these markers known, and are other factors that affect clinical expression well understood?
 - Yes
 - Is there a presymptomatic phase for this disorder in which interventions are available?
 - Yes
 - Interventions that improve outcomes:
 - Prevent/delay onset of disease
 - Detect disease at earlier stage that has more effective treatment
 - Discontinue surveillance or screening interventions
 - Meets CU Criteria
 - No
 - Interventions with uncertain impact on outcomes but are standard of care
 - Indeterminate, consider clinical vetting
 - Does not meet CU Criteria
 - No
 - Does not meet CU Criteria
 - No
 - Does not meet CU Criteria
 - No
 - Does not meet CU Criteria
 - No
 - Does not meet CU Criteria