Medical Policy

Title: Molecular Testing for the Management of Pancreatic Cysts or Barrett’s Esophagus

Professional
Original Effective Date: October 1, 2015
Revision Date(s): October 1, 2015; August 17, 2016; August 15, 2017; October 25, 2017; December 20, 2018; August 28, 2019; October 1, 2019
Current Effective Date: December 20, 2018

Institutional
Original Effective Date: October 1, 2015
Revision Date(s): October 1, 2015; August 17, 2016; August 15, 2017; October 25, 2017; December 20, 2018; August 28, 2019; October 1, 2019
Current Effective Date: December 20, 2018

State and Federal mandates and health plan member contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. To verify a member’s benefits, contact Blue Cross and Blue Shield of Kansas Customer Service.

The BCBSKS Medical Policies contained herein are for informational purposes and apply only to members who have health insurance through BCBSKS or who are covered by a self-insured group plan administered by BCBSKS. Medical Policy for FEP members is subject to FEP medical policy which may differ from BCBSKS Medical Policy.

The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents of Blue Cross and Blue Shield of Kansas and are solely responsible for diagnosis, treatment and medical advice.

If your patient is covered under a different Blue Cross and Blue Shield plan, please refer to the Medical Policies of that plan.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
</table>
| Individuals:
• With pancreatic cysts who do not have a definitive diagnosis after first-line evaluation | Interventions of interest are:
• Standard diagnostic and management practices plus topographic genotyping (PancraGEN molecular testing) | Comparators of interest are:
• Standard diagnostic and management practices alone | Relevant outcomes include:
• Overall survival
• Disease-specific survival
• Test accuracy
• Test validity
• Change in disease status
• Morbid events
• Quality of life |

| Individuals:
• With Barrett’s esophagus | Interventions of interest are:
• Standard prognostic techniques plus topographic genotyping (BarreGEN molecular testing) | Comparators of interest are:
• Standard prognostic techniques alone | Relevant outcomes include:
• Overall survival
• Disease-specific survival
• Test accuracy
• Test validity
• Change in disease status
• Morbid events
• Quality of life |
Populations

<table>
<thead>
<tr>
<th>Individuals:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• With solid pancreaticobiliary lesions who do not have a definitive diagnosis after first-line evaluation</td>
</tr>
</tbody>
</table>

Interventions

<table>
<thead>
<tr>
<th>Interventions of interest are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Standard diagnostic and management practices plus topographic genotyping (PancraGEN molecular testing)</td>
</tr>
</tbody>
</table>

Comparators

<table>
<thead>
<tr>
<th>Comparators of interest are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Standard diagnostic and management practices alone</td>
</tr>
</tbody>
</table>

Outcomes

<table>
<thead>
<tr>
<th>Relevant outcomes include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Overall survival</td>
</tr>
<tr>
<td>• Disease-specific survival</td>
</tr>
<tr>
<td>• Test validity</td>
</tr>
<tr>
<td>• Change in disease status</td>
</tr>
<tr>
<td>• Morbid events</td>
</tr>
<tr>
<td>• Quality of life</td>
</tr>
</tbody>
</table>

DESCRIPTION

Tests that integrate microscopic analysis with molecular tissue analysis are generally called topographic genotyping. Interpace Diagnostics offers 2 such tests that use the PathFinderTG platform (eg, PancraGEN, BarreGEN). These molecular tests are intended to be used adjunctively when a definitive pathologic diagnosis cannot be made, because of the inadequate specimen or equivocal histologic or cytologic findings, to inform appropriate surveillance or surgical strategies.

OBJECTIVE

The objective of this policy is to determine whether testing using topographic genotyping in addition to standard diagnostic or prognostic practices improve the net health outcome in individuals with pancreatic cysts, Barrett's esophagus, or solid pancreaticobiliary lesions.

BACKGROUND

Mucinous Neoplasms of the Pancreas

True pancreatic cysts are fluid-filled, cell-lined structures, which are most commonly mucinous cysts (intraductal papillary mucinous neoplasm [IPMN] and mucinous cystic neoplasm), which are associated with future development of pancreatic cancers. Although mucinous neoplasms associated with cysts may cause symptoms (eg, pain, pancreatitis), an important reason that such cysts are followed is the risk of malignancy, which is estimated to range from 0.01% at the time of diagnosis to 15% in resected lesions.

Management

Given the rare occurrence but the poor prognosis of pancreatic cancer, there is a need to balance potential early detection of malignancies while avoiding unnecessary surgical resection of cysts. Several guidelines address the management of pancreatic cysts, but high-quality evidence to support these guidelines is not generally available. Although recommendations vary, first-line evaluation usually includes an examination of cyst cytopathologic or radiographic findings and cyst fluid carcinoembryonic antigen. In 2012, an international consensus panel published statements on the management of IPMN and mucinous cystic neoplasm of the pancreas.¹ These statements are referred to as the Fukouka Consensus Guidelines and were based on a symposium held in Japan in 2010, which updated a 2006 publication (Sendai Consensus Guidelines) by this same group.² The panel recommended surgical resection for all surgically fit patients with main duct
IPMN or mucinous cystic neoplasm. For branch duct IPMN, surgically fit patients with cytology suspicious or positive for malignancy are recommended for surgical resection, but patients without “high-risk stigmata” or “worrisome features” may be observed with surveillance. “High-risk stigmata” are obstructive jaundice in proximal lesions (head of the pancreas); the presence of an enhancing solid component within the cyst; or 10 mm or greater dilation of the main pancreatic duct. “Worrisome features” are pancreatitis; lymphadenopathy; cyst size 3 cm or greater; thickened or enhancing cyst walls on imaging; 5 to 10 mm dilation of the main pancreatic duct; or abrupt change in pancreatic duct caliber with distal atrophy of the pancreas.

The American Gastroenterological Association (2015) published guidelines on the evaluation and management of pancreatic cysts; it recommended patients undergo further evaluation with endoscopic ultrasound-guided fine-needle aspiration only if the cyst has 2 or more worrisome features (size ≥3 cm, a solid component, a dilated main pancreatic duct). The guidelines also recommended that patients with these “concerning features” confirmed on fine-needle aspiration undergo surgery.

Barrett’s Esophagus

Barrett’s esophagus refers to the replacement of normal esophageal epithelial layer with metaplastic columnar cells in response to chronic acid exposure from gastroesophageal reflux disease. The metaplastic columnar epithelium is a precursor to esophageal adenocarcinoma. These tumors frequently spread before symptoms are present so detection at an early stage might be beneficial.

Management

Surveillance for esophageal adenocarcinoma is recommended for those diagnosed with Barrett’s esophagus. However, there are few data to guide recommendations about management and surveillance, and many issues are controversial. In 2015 guidelines from the American College of Gastroenterology (ACG) and a consensus statement from an international group of experts (Benign Barrett’s and CANcer Taskforce) on the management of Barrett’s esophagus were published. ACG recommendations for surveillance are stratified by the presence of dysplasia. When no dysplasia is detected, ACG has reported the estimated risk of progression to cancer for patients ranges from 0.2% to 0.5% per year and ACG has recommended endoscopic surveillance every 3 to 5 years. For low-grade dysplasia, the estimated risk of progression is about 0.7% per year, and ACG has recommended endoscopic therapy or surveillance every 12 months. For high-grade dysplasia, the estimated risk of progression is about 7% per year, and ACG has recommended endoscopic therapy. The Benign Barrett’s and CANcer Taskforce consensus group did not endorse routine surveillance for people with no dysplasia and was unable to agree on surveillance intervals for low-grade dysplasia.

Solid Pancreaticobiliary Lesions

Solid pancreaticobiliary lesions refer to lesions found on the pancreas, gallbladder, or biliary ducts. A solid lesion may be detected as an incidental finding on computed
tomography scans performed for another reason, though this occurs rarely. The
differential diagnosis of a solid pancreatic mass includes primary exocrine pancreatic
cancer, pancreatic neuroendocrine tumor, lymphoma, metastatic cancer, chronic
pancreatitis, or autoimmune pancreatitis.

Management
Currently, if a transabdominal ultrasound confirms the presence of a lesion, an abdominal
computed tomography scan is performed to confirm the presence of the mass and
determine disease extent. If the computed tomography provides enough information to
recommend a resection and if the patient is able to undergo the procedure, no further
testing is necessary. If the diagnosis remains unclear, additional procedures may be
recommended. Symptomatic patients undergo cytology testing. If results from cytology
testing are inconclusive, fluorescent in situ hybridization molecular testing of solid
pancreaticobiliary lesions is recommended. PancraGEN topographic genotyping is being
investigated as either an alternative to or as an adjunct to fluorescent in situ
hybridization in the diagnostic confirmation process.

Topographic Genotyping
Topographic genotyping, also called molecular anatomic pathology, integrates
microscopic analysis (anatomic pathology) with molecular tissue analysis. Under
microscopic examination of tissue and other specimens, areas of interest may be
identified and microdissected to increase tumor cell yield for subsequent molecular
analysis. Topographic genotyping may permit pathologic diagnosis when first-line
analyses are inconclusive.6

RedPath Integrated Pathology (now Interpace Diagnostics) has patented a proprietary
platform called PathFinderTG; it provides mutational analyses of patient specimens. The
patented technology permits analysis of tissue specimens of any size, “including minute
needle biopsy specimens,” and any age, “including those stored in paraffin for over 30
years.”7 Interpace currently describes in detail 1 PathFinderTG test called PancraGEN on
its website and describes another PathFinder test called BarreGEN as in a “soft launch”
(listed and briefly described in Table 1).8 As stated on the company website, PancraGEN
integrates molecular analyses with first-line results (when they are inconclusive) and
pathologist interpretation.9 The manufacturer calls this technique integrated molecular
pathology. Test performance information is not provided on the website.

Table 1. PathFinderTG Tests8

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Specimen Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>PathFinderTG Pancreas (now called PancraGEN)</td>
<td>Uses loss of heterozygosity markers, oncogene variants, and DNA content abnormalities to stratify patients according to their risk of progression to cancer</td>
<td>Pancreatobiliary fluid/ERCP brush, pancreatic masses, or pancreatic tissue</td>
</tr>
<tr>
<td>PathFinderTG Barrett (now called BarreGEN)</td>
<td>Measures the presence and extent of genomic instability and integrates those results with histology</td>
<td>Esophageal tissue</td>
</tr>
</tbody>
</table>

ERCP: endoscopic retrograde cholangiopancreatography.
REGULATORY STATUS
Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). Patented diagnostic tests (eg, PancraGEN™) are available only through Interpace Diagnostics (Pittsburgh, PA and New Haven, CT; formerly RedPath Integrated Pathology) under the auspices of CLIA. Laboratories that offer LDTs must be licensed by CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of this test.

POLICY
Molecular testing using the PathFinderTG system is considered experimental / investigational for all indications including the evaluation of pancreatic cyst fluid, Barrett’s esophagus, or solid pancreaticobiliary lesions.

Policy Guidelines
Genetics Nomenclature Update
The Human Genome Variation Society nomenclature is used to report information on variants found in DNA and serves as an international standard in DNA diagnostics. It is being implemented for genetic testing medical evidence review updates starting in 2017 (see Table PG1). The society’s nomenclature is recommended by the Human Variome Project, the HUman Genome Organization, and by the Human Genome Variation Society itself.

The American College of Medical Genetics and Genomics and the Association for Molecular Pathology standards and guidelines for interpretation of sequence variants represent expert opinion from both organizations, in addition to the College of American Pathologists. These recommendations primarily apply to genetic tests used in clinical laboratories, including genotyping, single genes, panels, exomes, and genomes. Table PG2 shows the recommended standard terminology—“pathogenic,” “likely pathogenic,” “uncertain significance,” “likely benign,” and “benign”—to describe variants identified that cause Mendelian disorders.
Table PG1. Nomenclature to Report on Variants Found in DNA

<table>
<thead>
<tr>
<th>Previous</th>
<th>Updated</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutation</td>
<td>Disease-associated variant</td>
<td>Disease-associated change in the DNA sequence</td>
</tr>
<tr>
<td>Variants</td>
<td>Change in the DNA sequence</td>
<td></td>
</tr>
<tr>
<td>Familial variant</td>
<td>Disease-associated variant identified in a proband for use in subsequent targeted genetic testing in first-degree relatives</td>
<td></td>
</tr>
</tbody>
</table>

Table PG2. ACMG-AMP Standards and Guidelines for Variant Classification

<table>
<thead>
<tr>
<th>Variant Classification</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogenic</td>
<td>Disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Likely pathogenic</td>
<td>Likely disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Variant of uncertain significance</td>
<td>Change in DNA sequence with uncertain effects on disease</td>
</tr>
<tr>
<td>Likely benign</td>
<td>Likely benign change in the DNA sequence</td>
</tr>
<tr>
<td>Benign</td>
<td>Benign change in the DNA sequence</td>
</tr>
</tbody>
</table>

ACMG: American College of Medical Genetics and Genomics; AMP: Association for Molecular Pathology.

RATIONALE
This evidence review was most recently updated with literature review through the period of May 29, 2019.

Evidence reviews assess whether a medical test is clinically useful. A useful test provides information to make a clinical management decision that improves the net health outcome. That is, the balance of benefits and harms is better when the test is used to manage the condition than when another test or no test is used to manage the condition.

The first step in assessing a medical test is to formulate the clinical context and purpose of the test. The test must be technically reliable, clinically valid, and clinically useful for that purpose. Evidence reviews assess the evidence on whether a test is clinically valid and clinically useful. Technical reliability is outside the scope of these reviews, and credible information on technical reliability is available from other sources.

When this evidence review was created, it evaluated 3 representative applications of topographic genotyping-pancreatic cysts, gliomas, and Barrett’s esophagus. At present, Interpace Diagnostics offers tests using its technology to evaluate patients with pancreatic cysts, Barrett’s esophagus, and solid pancreaticobiliary lesions, which are the focus of the current review.

Pancreatic Cysts
Clinical Context and Test Purpose
The widespread use and increasing sensitivity of computed tomography and magnetic resonance imaging scans have been associated with a marked increase in the finding of incidental pancreatic cysts. In patients without a history of symptoms of pancreatic disease undergoing computed tomography and magnetic resonance imaging, studies have estimated the prevalence of pancreatic cysts as being between 2% and 3%. Although data have suggested the malignant transformation of these cysts is very rare, due to the potential life-threatening prognosis of pancreatic cancer, an incidental finding can start an aggressive clinical workup.

Many cysts can be followed with imaging surveillance. Recommendations for which cysts should proceed for surgical resection vary. If imaging of the cyst is inconclusive, additional testing of cystic pancreatic lesions is usually performed by endoscopic ultrasound with fine-needle
aspiration (EUS-FNA) sampling of the fluid and cyst wall for cytologic examination and analysis. Cytologic examination of these lesions can be difficult or indeterminate due to low cellularity, cellular degeneration, or procedural difficulties. Ancillary tests (e.g., amylase, lipase, carcinoembryonic antigen levels) often are performed on cyst fluid to aid in diagnosis and prognosis, but results still may be equivocal.

International consensus has recommended surgical resection for all surgically fit patients with mucinous cystic neoplasm or main duct intraductal papillary mucinous neoplasm. This is due to the uncertainty of the natural history of mucinous cystic neoplasm and main duct intraductal papillary mucinous neoplasm and the presumed malignant potential of all types. Estimates of morbidity and mortality following resection vary. A technical review by Scheiman et al (2015), conducted for the American Gastroenterological Association, combined estimates into a pooled mortality rate of about 2% and serious complication rate of about 30%. Therefore, there is a need for more accurate prognosis to optimize detection of malignancy while minimizing unnecessary surgery and treatment.

The question addressed in this evidence review is: Does testing using PancraGEN topographic genotyping in addition to standard diagnostic or prognostic practices improve the net health outcome in individuals with pancreatic cysts?

The following PICOs were used to select literature to inform this review.

Patients
The relevant population of interest is patients for whom there remains clinical uncertainty regarding the malignant potential of a pancreatic cyst after comprehensive first-line evaluation and who are being considered for surgery.

Interventions
The test being considered is PancraGEN topographic genotyping in addition to standard diagnostic or prognostic practices.

PathFinderTG (Interpace Diagnostics) gene variant profiles are intended to inform complex diagnostic dilemmas in patients at risk of cancer. The manufacturer’s website states specifically that the PancraGEN technology is “intended to be an adjunct to first line testing” and suggests that the test is useful in assessing who will benefit most from surveillance and or surgery. The clinical purpose of PancraGEN is to allow patients with low-risk cysts to avoid unnecessary surgery or to select patients with malignant lesions for surgery more accurately. PancraGEN would likely be used in conjunction with clinical and radiologic characteristics, along with cyst fluid analysis; therefore, one would expect an incremental benefit to using the test.

As shown in Table 1, the PathFinderTG Pancreas test (now called PancraGEN) combines measures of loss of heterozygosity (LOH) markers, oncogene variants, and DNA content abnormalities to stratify patients according to their risk of progression to cancer. According to Al-Haddad et al (2015), who reported results from a registry established with support from the manufacturer, the current diagnostic algorithm is as follows in Table 2.
Table 2. Diagnostic Algorithm for PancraGEN

<table>
<thead>
<tr>
<th>Diagnostic Category</th>
<th>Molecular Criteriaa</th>
<th>Coexisting Concerning Clinical Featuresb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign</td>
<td>DNA lacks molecular criteria</td>
<td>Not considered for this diagnosis</td>
</tr>
<tr>
<td>Statistically indolent</td>
<td>DNA meets 1 molecular criterion</td>
<td>None</td>
</tr>
<tr>
<td>Statistically higher risk</td>
<td>DNA meets 1 molecular criterion</td>
<td>1 or more</td>
</tr>
<tr>
<td>Aggressive</td>
<td>DNA meets at least 2 molecular criteria</td>
<td>Not considered for this diagnosis</td>
</tr>
</tbody>
</table>

Al-Haddad et al (2015).18, a Molecular criteria: (1) a single high-clonality variant, (2) elevated level of high-quality DNA, (3) multiple low-clonality variants; (4) a single low-clonality oncogene variant. b Includes any of the following: cyst size >3 cm, growth rate >3 mm/y, duct dilation >1 cm, carcinoembryonic antigen level >1000 ng/mL, cytologic evidence of high-grade dysplasia.

Comparators
The following tests and practices are currently being used to diagnose pancreatic cysts: standard diagnostic and prognostic techniques, including imaging using magnetic resonance imaging with magnetic resonance cholangiopancreatography, multidetector computed tomography, or intraductal ultrasound, EUS-FNA, cytology, and amylase and carcinoembryonic antigen in cyst fluid. In the absence of definitive malignancy by first-line testing, indications for surgery are frequently based on morphologic features according to 2012 international consensus panel statements for a management of intraductal papillary mucinous neoplasm and mucinous cystic neoplasms.1.

Outcomes
The primary outcomes of interest are survival and complications of surgery. Beneficial outcomes resulting from a true-test result are the initiation of appropriate treatment or avoiding unnecessary surgery. Harmful outcomes resulting from a false test result are unnecessary surgery and failing to receive timely appropriate surgery or treatment. The American Gastroenterological Association has recommended surveillance of cysts that do not meet criteria for resection for 5 years.3.

Study Selection Criteria
For the evaluation of the clinical validity of the PancraGEN test (including the algorithm), studies that met the following eligibility criteria were considered:

- Reported on the accuracy of the patented PathFinder Pancreas or PancraGEN technology for classifying patients into prognostic categories for malignancy;
- Included a suitable reference standard (long-term follow-up for malignancy; histopathology from surgically resected lesions);
- Patient and sample clinical characteristics were described; and
- Patient and sample selection criteria were described.

Several studies were excluded from the evaluation of the clinical validity of the PancraGEN test for the following reasons: they assessed components of the test separately for the malignancy outcome,19,20,21,22,23,24,25,26,27,28,29,30,31,32 did not include information needed to calculate performance characteristics for the malignancy outcome,33 did not describe how the reference standard diagnoses were established,34 did not use a suitable reference standard,35,36 did not adequately describe the patient characteristics,21,31,37 or did not adequately describe patient selection criteria.20,21,31,33,37 The following paragraphs describe the selected studies, which included 1 systematic review and 3 retrospective studies.
Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Systematic Reviews
A systematic review of LOH-based topographic genotyping with PathFinderTG was prepared by Trikalinos et al (2010) for the Agency for Healthcare Research and Quality technology assessment program.6 Key questions addressed published evidence on analytic test performance, diagnostic ability, and clinical validity of the test, and what evidence compared the PathFinderTG test with conventional pathology. Reviewers summarized 3 publications relating to diagnostic ability and clinical validity for pancreatic and biliary tree tumors,20,21,38, but did not perform meta-analyses of performance characteristics. Reviewers concluded that eligible studies on the diagnostic and prognostic ability of the test were small in sample size and had overt methodologic limitations, including retrospective assessment. Reviewers pointed out that studies did not provide important information on patient selection, patient characteristics, treatments received, clinical end point definitions, justification of sample size, selection of test cut points, and selection among various statistical models. Additionally, reviewers noted that there were strong indications that the selection of certain test cut points was determined post hoc, in that cutoffs varied widely across studies and were not validated in an external population.

Table 3 describes the included retrospective studies on clinical validity. A summary paragraph of each study follows the table.

Table 3. Retrospective Studies of Clinical Validity of PancraGEN

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Reference Standard</th>
<th>Performance Characteristics (95% CI), %</th>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winner et al (2015)39.</td>
<td>36 patients evaluated for pancreatic cysts, had surgical resection, cyst fluid, and molecular analysis</td>
<td>Surgical pathology</td>
<td>Sens: 67 (31 to 91) Spec: 81 (61 to 93) PPV: 55 (25 to 82) NPV: 88 (68 to 97)</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Haddad et al (2015)18</td>
<td>492 patients who had undergone IMP testing prescribed by their physician and for whom clinical outcomes were available with 23-mo FU</td>
<td>Long-term FU, surgical pathology</td>
<td>Sens: 83 (72 to 91) Spec: 91 (87 to 93) PPV: 58 (47 to 68) NPV: 97 (95 to 99)</td>
<td>Consensus Guidelines Sens: 91 (81 to 97) Spec: 46 (41 to 51) PPV: 21 (16 to 26) NPV: 97 (94 to 99)</td>
</tr>
</tbody>
</table>
Malhotra et al (2014) analyzed 40 patients with pancreaticobiliary masses with cytologic diagnosis of atypical, negative, or indeterminate and minimum 3-month follow-up (FU). The study used surgical pathology or oncology FU report as the reference standard. The results showed:

- Sensitivity: 47% (24 to 71%)
- Specificity: 100% (63 to 100%)
- Positive Predictive Value (PPV): 100% (60 to 100%)
- Negative Predictive Value (NPV): 50% (27 to 73%)

Winner et al (2015) retrospectively analyzed prospectively collected data from 40 patients who were evaluated for pancreatic cysts between 2006 and 2012 and who had surgical resection and cyst fluid molecular analysis with PathFinderTG. The authors reported the population tended to be low or intermediate risk according to Sendai international consensus criteria for surgical resection. Surgical pathology was the reference standard. The molecular results were classified as "favor benign" or "favor aggressive" based on "clinical impression, fluid cytology, CEA [carcinoembryonic antigen] and amylase results as well as the molecular cyst fluid analysis and adjunct tests." It is unclear whether these were the diagnosis classifications provided on the PathFinderTG reports. Results are reported for 36 cysts (the reasons for 4 exclusions were not given). PathFinderTG correctly classified 6 of the 9 malignant cysts as "favor aggressive" (sensitivity, 67%) and correctly classified 22 of 27 benign cysts as "favor benign" (specificity, 81%). The positive predictive value (PPV) was 55% and the negative predictive value (NPV) was 88%. Confidence intervals were calculated from the data provided.

RedPath Integrated Pathology (2011) established the National Pancreatic Cyst Registry (NPCR) and, later, Al-Haddad et al (2015) published results for 492 (26%) of 1864 registered patients. The Registry website describes the registry as a prospective study "to evaluate the performance characteristics and clinical utility of integrated molecular pathology and determine the predictive value of both traditional first-line tests and integrated molecular pathology." Ten academic medical centers and community-based practices registered patients who had pancreatic cysts, underwent PathFinderTG testing, and were followed for development of malignancy. Benign outcomes included benign surgical pathology results, low- or intermediate-grade dysplasia, resolution of cyst, or clinical follow-up by imaging for a minimum of 23 months without evidence of malignant outcome; malignant outcomes were determined by surgical pathology diagnosis of high-grade dysplasia, carcinoma in situ, or adenocarcinoma, newly diagnosed malignant cytology results, clinically confirmed pancreatic cancer in patient records, or death attributed to pancreatic cancer. Investigators compared the diagnostic performance of PathFinderTG with that of an international consensus classification scheme. Both classification schemes categorize patients with pancreatic cysts as high or low risk for malignancy; those considered high risk undergo surgical resection and those considered low risk might elect observation with surveillance. At median follow-up of 35 months for patients with benign and statistically indolent diagnoses (range, 23-92 months), 66 (35%) patients were diagnosed with a malignancy. Sensitivity, specificity, PPV, and NPV were 83%, 91%, 58%, and 97% for PathFinderTG and 91% (p=0.17 PathFinderTG vs consensus), 46% (p<0.001), 21% (p<0.001), and 97% (p=0.88) for international consensus classification. Accuracy was 90% (95% CI, 87% to 92%) for PathFinderTG and 52% (95% CI, 48% to 57%) for the international consensus classification, respectively. The negative likelihood ratio was very similar for PancraGEN (0.2; 95% CI, 0.1 to...
0.3) and the international consensus classification (0.2; 95% CI, 0.1 to 0.4). However, the positive likelihood ratio was much higher for PancraGEN (8.9; 95% CI, 6.5 to 12.2) than for the international consensus classification (1.7; 95% CI, 1.5 to 1.9). The authors noted that the PathFinderTG diagnostic criteria have evolved and older cases in the registry were recategorized using the new criteria. Of the 492 registry cases included, 468 (95%) had to be recategorized using the current diagnostic categories. A strength of the study was its inclusion of both surgery and surveillance groups. Limitations included the retrospective design, exclusion of 74% of all registry patients due primarily to insufficient follow-up; relatively short follow-up for observing the malignant transformation of benign lesions; and the exclusion of patients classified as malignant by international consensus criteria who would not have undergone PathFinderTG testing. The recategorization of the majority of the PathFinderTG diagnoses due to evolving criteria between 2011 and 2014 also make it questionable whether the older estimates of performance characteristics are relevant. Because of these limitations, there is uncertainty in conclusions drawn about clinical validity.

Malhotra et al (2014) at RedPath retrospectively evaluated 30 patients who presented with pancreaticobiliary masses and had a minimum follow-up of 3 months. Cytology correctly diagnosed 4 of 21 malignant cases (sensitivity, 19%), and identified 7 of 9 patients with nonaggressive disease (specificity, 78%). Only 26 patients with a cytologic diagnosis of atypical, negative, or indeterminate underwent PathFinderTG profiling, precluding assessment of diagnostic performance. PathFinderTG correctly diagnosed 8 of 17 malignant cases (sensitivity, 47%) and identified all 9 patients with nonaggressive disease (specificity, 100%). Although the combination of positive cytology and positive PathFinderTG results improved sensitivity to 57% (12/21), 9 malignant cases were missed by both tests.

The purpose of the gaps tables (see Tables 4 and 5) is to display notable gaps identified in each study. This information is synthesized as a summary of the body of evidence following each table and provides the conclusions on the sufficiency of the evidence supporting the position statement.

Table 4. Relevance Study Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes</th>
<th>Duration of Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winner et al (2015)²⁹</td>
<td>4. Patients in study were all scheduled for surgery, while not all patients with pancreatic cysts typically get surgical referrals</td>
<td>2. Comparisons to a reference standard were not made</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Haddad et al (2015)¹⁸</td>
<td>2. As the criteria for the test have evolved, older cases in the registry had to be recategorized based on new criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The evidence limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

<table>
<thead>
<tr>
<th>Study</th>
<th>Populationa</th>
<th>Interventionb</th>
<th>Comparatorc</th>
<th>Outcomesd</th>
<th>Duration of Follow-Upc</th>
</tr>
</thead>
<tbody>
<tr>
<td>to a reference standard were not made</td>
<td>outcomes not reported and calculated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The evidence limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

a Population key: 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.
b Intervention key: 1. Classification thresholds not defined; 2. Version used unclear; 3. Not intervention of interest.
c Comparator key: 1. Classification thresholds not defined; 2. Not compared to credible reference standard; 3. Not compared to other tests in use for same purpose.
d Outcomes key: 1. Study does not directly assess a key health outcome; 2. Evidence chain or decision model not explicated; 3. Key clinical validity outcomes not reported (sensitivity, specificity and predictive values); 4. Reclassification of diagnostic or risk categories not reported; 5. Adverse events of the test not described (excluding minor discomforts and inconvenience of venipuncture or noninvasive tests).
e Follow-Up key: 1. Follow-up duration not sufficient with respect to natural history of disease (true positives, true negatives, false positives, false negatives cannot be determined).

Table 5. Study Design and Conduct Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Selectiona</th>
<th>Blindingb</th>
<th>Delivery of Testc</th>
<th>Selective Reportingd</th>
<th>Data Completenesse</th>
<th>Statisticalf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winner et al (2015)b5</td>
<td>1.No discussion whether cytologists blinded to other test results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Haddad et al (2015)b8</td>
<td></td>
<td></td>
<td></td>
<td>1.High number of samples from registry excluded due to insufficient follow-up (74%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malhotra et al (2014)b40</td>
<td>1.No discussion whether cytologists blinded to other test results</td>
<td></td>
<td></td>
<td></td>
<td>1.Small sample size did not allow for significance tests</td>
<td></td>
</tr>
</tbody>
</table>

The evidence limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

a Selection key: 1. Selection not described; 2. Selection not random or consecutive (ie, convenience).
b Blinding key: 1. Not blinded to results of reference or other comparator tests.
c Delivery key: 1. Timing of delivery of index or reference test not described; 2. Timing of index and comparator tests not same; 3. Procedure for interpreting tests not described; 4. Expertise of evaluators not described.
e Data Completeness key: 1. Inadequate description of indeterminate and missing samples; 2. High number of samples excluded; 3. High loss to follow-up or missing data.
f Statistical key: 1. Confidence intervals and/or p values not reported; 2. Comparison to other tests not reported.

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

Direct demonstration of clinical utility would require evidence that PancraGEN produces incremental improvement in survival (by detecting malignant and potentially malignant cysts) or decreased morbidity of surgery (by avoiding surgery for cysts highly likely benign) when used adjunctively with the current diagnostic and prognostic standards.

The Agency for Healthcare Research and Quality systematic review conducted by Trikalinos et al (2010) concluded that there were no studies at that time directly measuring whether using LOH-based topographic genotyping with PathFinderTG improved patient-relevant clinical outcomes.6. No studies assessing clinical utility published since 2010 were identified.

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

Das et al (2015) published a simulation study comparing 4 management strategies in a hypothetical cohort of 1000 asymptomatic patients with a 3-cm pancreatic cyst.42. The first strategy (watch and wait) used cross-sectional imaging and surgical consultation for resection only if symptoms or high-risk morphologic features developed. The second strategy (resect if operable) referred all patients for surgical consultation for cyst resection, and operability was determined according to a surgical risk score. In the third strategy (standard of care), hypothetical patients had cross-sectional imaging and EUS-FNA; mucinous cysts were referred for surgical resection and nonmucinous cysts were followed with periodic imaging. The fourth strategy (standard of care plus integrated molecular pathology) was the same as strategy 3 but also included molecular testing using PathFinderTG. The strategies were compared using a linear decision tree terminating in a Markov model. The estimates for the model variables were derived from published information or expert opinion. Specifically, the performance characteristics of the PathFinderTG assay used in strategy 4 were estimated using data from a literature search covering the years 1977 to 2012. Strategy 4 resulted in the highest estimated quality-adjusted life years of the 4 strategies in the base case (10.36 in strategy 1; 9.95 in strategy 2; 11.22 in strategy 3; 12.33 in strategy 4) and for most of the sensitivity analyses. The CIs were not reported for the quality-adjusted life year estimates. The quality of the data behind many of the model assumptions was low, including the assumptions about the PathFinderTG performance characteristics. Given the uncertainty with the model assumptions, the relevance of the estimates from this simulation is unclear.

The publication by Al-Haddad et al (2015) from NPCR also assessed evidence of clinical utility by describing how the PancraGEN might provide incremental benefit over consensus guidelines.18. In 289 patients who met consensus criteria for surgery, 229 had a benign outcome. The PancraGEN algorithm correctly classified 193 (84%) of the 229 as benign or statistically indolent. The consensus guidelines classified 203 patients as appropriate for surveillance and six of them had a malignant outcome. The PancraGEN correctly categorized 4 of 6 as high risk (see Table 6). The complete cross-classification of the 2 classification strategies by outcomes was not provided.
Using the same subset of patients described in the previous section from NPCR (n=491), Loren et al (2016) published results comparing the association between PancraGEN diagnoses and Sendai and Fukouka consensus guideline recommendations with clinical decisions regarding intervention and surveillance.43 Patients were categorized as (1) "low-risk" or "high-risk" using the Interpace algorithm for PancraGEN diagnoses; (2) meeting "surveillance" criteria or "surgery" criteria using consensus guidelines; and (3) having "benign" or "malignant" outcomes during clinical follow-up as described previously. Additionally, the real-world management decision was categorized as "intervention" if there was a surgical report, surgical pathology, chemotherapy or positive cytology within 12 months of the index EUS-FNA, and as "surveillance" otherwise. Among patients who received surveillance as the real-world decision, 57% were also classified as needing surveillance according to consensus guidelines, and 96% were classified as low risk according to PancraGEN (calculated from data in Table 3). However, among patients who had an intervention as the real-world decision, 81% were classified as candidates for surgery by consensus guidelines, and 40% were classified as high risk by PancraGEN. In univariate logistic regression analyses, the odds ratio for the association between PancraGEN diagnoses and real-world decision was higher (odds ratio, 16.8; 95% CI, 9.0 to 34.4) than the odds for the association between the consensus guidelines recommendations and real-world decision (odds ratio, 5.6; 95% CI, 3.7 to 8.5). In 8 patients, the PancraGEN diagnosis was high risk, and the consensus guideline classification was low risk. In seven of these cases, the patient received an intervention resulting in the discovery of an additional 4 malignancies that would have been missed using the consensus guideline classification alone, and in the remaining case the patient underwent surveillance and did not develop a malignancy. In 202 patients, the PancraGEN diagnosis was low risk, and the consensus guideline classification was high risk. In 90 of these 202, patients had an intervention, and 8 additional malignancies were detected. In 112 of these 202, patients received surveillance, and 1 additional malignancy occurred in the surveillance group.43 The cross-tabulation of PancraGEN and international consensus classification by outcome was not shown in Loren et al (2016) but was derived from tables and text and is displayed in Table 6. This study demonstrated that results from PancraGEN testing are associated with real-world decisions, although other factors (e.g., physician judgment, patient preferences) could have affected these decisions.

Table 6. PancraGEN and International Consensus Classifications by Outcome (N=491)

<table>
<thead>
<tr>
<th>Malignant Outcome</th>
<th>PancraGEN Classification</th>
<th>Benign Outcome</th>
<th>Consensus Classification</th>
<th>PancraGEN Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Risk</td>
<td>High Risk</td>
<td>Low Risk</td>
<td>High Risk</td>
</tr>
<tr>
<td>Surveillance</td>
<td>2</td>
<td>4</td>
<td>Surveillance</td>
<td>193</td>
</tr>
<tr>
<td>Surgery</td>
<td>9</td>
<td>50</td>
<td>Surgery</td>
<td>193</td>
</tr>
</tbody>
</table>

Kowalski et al (2016) reported on an analysis of false-negatives from the same 492 records from the NPCR.44 Of the 6 cysts found false-negative using consensus classification, 5 cysts were 2 cm or less (the remaining case did not have data on cyst size) and one reported symptoms (obstructive jaundice). Of the 11 cases that were false-negative according to PancraGEN, 10 were reported to have EUS-FNA sampling limitations, one had a family history of pancreatic cancer, 4 reported symptoms (including pancreatitis, steatorrhea, nausea, bloating, and/or upper abdominal discomfort), and cysts sizes ranged from 0.7 to 6 cm for the 6 in which size was reported.

The best strategy for combining the results of PancraGEN with current diagnostic guidelines is not clear. There is some suggestion that PancraGEN might appropriately classify some cases
misclassified by current consensus guidelines, but the sample sizes in the cases where the PancraGEN and consensus guidelines disagree are small, limiting confidence in these results.

Section Summary: Pancreatic Cysts
The evidence for the clinical validity of PancraGEN consists of several retrospective studies. Most evaluated performance characteristics of PancraGEN for classifying pancreatic cysts according to the risk of malignancy without comparison to current diagnostic algorithms. The best evidence regarding incremental clinical validity comes from the report from the NPCR, which compared PancraGEN performance characteristics with current international consensus guidelines and found that PancraGEN has slightly lower sensitivity (83% vs 91%), similar NPV (97% vs 97%), but better specificity (91% vs 46%) and PPV (58% vs 21%) than the consensus guidelines. The registry study included a very select group of patients, only a small fraction of all enrolled patients, and used a retrospective design. Longer follow-up including more of the registry patients is needed. The manufacturer has indicated the technology is meant as an adjunct to first-line testing, but no algorithm for combining PancraGEN with consensus guidelines for decision making has been proposed, and the data reporting outcomes in patients where the PancraGEN and consensus guideline diagnoses disagreed was limited. There are no prospective studies with concurrent control demonstrating that PancraGEN can affect patient-relevant outcomes (e.g., survival, time to tumor recurrence, reduction in unnecessary surgeries). The evidence reviewed does not demonstrate that PathFinderTG has incremental clinical value in the diagnosis or prognosis of pancreatic cysts and associated cancer.

Barrett’s Esophagus
Clinical Context and Test Purpose
The American Gastroenterological Association has defined Barrett’s esophagus as replacement of normal epithelium at the distal esophagus by intestinal metaplasia, which predisposes to malignancy. Although grading of dysplasia in mucosal biopsies is the current standard for assessing the risk of malignant transformation, esophageal inflammation may mimic or mask dysplasia, and interobserver variability may yield inconsistent risk classifications. Additional prognostic information, therefore, may be potentially useful.

The question addressed in this evidence review is: Does testing using BarreGEN topographic genotyping in addition to standard prognostic practices improve the net health outcome in individuals with Barrett’s esophagus?

The following PICOs were used to select literature to inform this review.

Patients
The relevant population of interest is patients with Barrett’s esophagus. It is unclear what other clinical characteristics would identify candidates for BarreGEN or what previous testing is appropriate before BarreGEN.

Interventions
The test being considered is BarreGEN topographic genotyping in addition to standard prognostic practices.

The Interpace website describes BarreGEN as a molecular diagnostic test to "determine the risk of progressing to esophageal cancer in patients with Barrett's Esophagus."
Comparators
The following tests and practices are currently being used to predict developing Barrett’s esophagus: standard prognostic techniques generally include grading of dysplasia from endoscopy with biopsy.

Outcomes
Outcomes of interest are survival and conversion to esophageal cancer. It is not clear how the test would fit into the diagnostic pathway and effect treatment or surveillance recommendations, therefore, complete specification of other important outcomes is not possible. Because it is not yet clear how this test would be used in practice, follow-up time for outcomes is unclear.

Study Selection Criteria
For the evaluation of the clinical validity of the BarreGEN test (including the algorithm), studies that met the following eligibility criteria were considered:

- Reported on the accuracy of the patented PathFinder Barrett’s Esophagus or BarreGEN technology for classifying patients into prognostic categories for malignancy;
- Included a suitable reference standard (long-term follow-up for malignancy; histopathology from surgically resected lesions);
- Patient and sample clinical characteristics were described; and
- Patient and sample selection criteria were described.

Two studies were excluded from the evaluation of the clinical validity of the BarreGEN test because it was not clear whether the authors used the marketed version of the BarreGEN test.47,48,

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Systematic Reviews
The Agency for Healthcare Research and Quality review conducted by Trikalinos et al (2010), which assessed LOH-based topographic genotyping with PathFinderTG, did not find any publications of the PathFinderTG technology evaluating diagnostic ability, clinical validity or clinical utility for Barrett’s esophagus.6.

Section Summary: Clinically Valid
Evidence for the clinical validity of BarreGEN is limited, consisting of a single systematic review that did not identify relevant studies. Two observational studies were excluded based on selection criteria because it was unclear whether the specific test used was BarreGEN.
Clinically Useful
A test is clinically useful if the use of the results inform management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

No studies assessing the clinical utility of BarreGEN in this population were found.

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility. Because evidence for the clinical validity of BarreGEN is lacking, a chain of evidence that would support clinical utility cannot be constructed.

Section Summary: Barrett’s Esophagus
There is limited evidence evaluating the clinical validity of the BarreGEN test for assessing Barrett’s esophagus. The evidence reviewed does not demonstrate that BarreGEN testing for prognosis of Barrett’s esophagus adds incremental value to current prognostic assessments.

Solid Pancreaticobiliary Lesions
Clinical Context and Test Purpose
Pancreatic cancer is usually diagnosed in advanced stages when effective treatment options are limited. Currently, symptomatic patients with solid pancreaticobiliary lesions undergo cytology testing. If results from cytology testing are inconclusive, fluorescent in situ hybridization (FISH) molecular testing of solid pancreaticobiliary lesions is recommended. PancraGEN topographic genotyping is being investigated as either an alternative to or an adjunct to FISH in the diagnosis confirmation process.

The purpose of PancraGEN topographic genotyping in patients who are symptomatic with high suspicion of cholangiocarcinoma or pancreatic cancer with inconclusive cytology testing results is to potentially confirm a diagnosis, which would inform patient management decisions.

The question addressed in this evidence review is: Does testing using PancraGEN topographic genotyping in addition to standard diagnostic practices improve the net health outcome in individuals with solid pancreaticobiliary lesions?

The following PICOs were used to select literature to inform this review.

Patients
The relevant population of interest is symptomatic patients with high suspicion of cholangiocarcinoma or pancreatic cancer based on endoscopic imaging showing bile duct obstruction or solid mass who receive inconclusive cytology testing results.
Interventions
The test being considered is PancraGEN topographic genotyping, as either an alternative test or adjunct test to FISH molecular testing of solid pancreaticobiliary lesions. FISH is currently considered second-line to standard routine cytology testing.

Comparators
The following tests are currently being used to diagnose cholangiocarcinoma or pancreatic cancer: cytology testing with and without standard molecular FISH testing.

Outcomes
The primary outcome of interest is overall survival. Beneficial outcomes resulting from a true test result are the initiation of appropriate treatment or avoidance of unnecessary surgery. Harmful outcomes resulting from a false test result are unnecessary surgery or failing to receive timely appropriate surgery or chemotherapy. Cytology results with FISH and/or topographic genotyping may be available within a week. The long-term follow-up to monitor overall survival would require years.

Study Selection Criteria
For the evaluation of the clinical validity of the PancraGEN test (including the algorithm), studies that met the following eligibility criteria were considered:

• Reported on the accuracy of the patented PathFinder Pancreas or PancraGEN technology for classifying patients into prognostic categories for malignancy;
• Included a suitable reference standard (long-term follow-up for malignancy; histopathology from surgically resected lesions);
• Patient and sample clinical characteristics were described; and
• Patient and sample selection criteria were described.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Prospective and Retrospective Studies
Tables 7 and 8 summarize the characteristics and results of the 3 included studies on clinical validity. The populations of two of the studies were patients being evaluated for biliary strictures. Biliary strictures may be caused by solid pancreaticobiliary lesions, but there are other potential causes such as trauma to the abdomen, pancreatitis, or bile duct stones. The authors did not specify what proportion of the population of patients with biliary strictures had solid pancreaticobiliary lesions.

Compared to cytology alone, the use of cytology plus fluorescence in situ hybridization (FISH) plus mutation profiling (MP) increased sensitivity significantly. The incremental value of using cytology plus FISH plus MP over cytology plus FISH is unclear.
Table 7. Characteristics of Clinical Validity Studies Assessing PancraGEN

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Population</th>
<th>N</th>
<th>Diagnostic Test</th>
<th>Comparator</th>
<th>Follow-Up, mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khosravi et al (2018)<sup>56</sup></td>
<td>Retrospective consecutive sample</td>
<td>Patients who had EUS-FNA and/or ERCP for solid pancreatic lesions indeterminate by cytology</td>
<td>232</td>
<td>Cytology plus MP (PancraGEN)</td>
<td>Cytology alone</td>
<td>12</td>
</tr>
<tr>
<td>Kushnir et al (2018)<sup>55</sup></td>
<td>Prospective consecutive sample</td>
<td>Patients who underwent ERCP for evaluation of biliary strictures</td>
<td>100</td>
<td>Cytology plus MP (PancraGEN)</td>
<td>Cytology alone; cytology plus FISH; cytology plus FISH and MP</td>
<td>12</td>
</tr>
<tr>
<td>Gonda et al (2017)<sup>51</sup></td>
<td>Prospective consecutive sample</td>
<td>Patients who underwent ERCP for evaluation of biliary strictures, with 2 brushings (1 for cytology, 1 for FISH)</td>
<td>100</td>
<td>Cytology plus MP (PathFinderTG-Biliary)</td>
<td>Cytology alone; cytology plus FISH; cytology plus FISH and MP</td>
<td>12</td>
</tr>
</tbody>
</table>

ERCP: endoscopic retrograde cholangiopancreatography; EUS-FNA: endoscopic ultrasound fine needle aspiration; FISH: fluorescence in situ hybridization; MP: mutation profiling.

Table 8. Diagnostic Accuracy Results of Clinical Validity Studies Assessing PancraGEN

<table>
<thead>
<tr>
<th>Study</th>
<th>Diagnostic Test</th>
<th>Sensitivity % (95% CI)</th>
<th>Specificity % (95% CI)</th>
<th>PPV % (95% CI)</th>
<th>NPV % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khosravi et al (2018)<sup>56</sup></td>
<td>Cytology alone</td>
<td>41 (27 to 56)</td>
<td>97 (94 to 99)</td>
<td>80 (59 to 93)</td>
<td>86 (81 to 90)</td>
</tr>
<tr>
<td></td>
<td>MP alone</td>
<td>46 (27 to 67)</td>
<td>94 (87 to 98)</td>
<td>71 (48 to 86)</td>
<td>85 (77 to 92)</td>
</tr>
<tr>
<td></td>
<td>Cytology plus MP</td>
<td>67 (53 to 80)</td>
<td>95 (90 to 97)</td>
<td>81 (65 to 91)</td>
<td>92 (81 to 95)</td>
</tr>
<tr>
<td>Kushnir et al (2018)<sup>55</sup></td>
<td>Cytology alone</td>
<td>26 (NR)</td>
<td>100 (NR)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Cytology plus FISH</td>
<td>44 (NR); p<0.001</td>
<td>100 (NR)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Cytology plus MP</td>
<td>56 (NR); p<0.001</td>
<td>97 (NR)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Cytology plus FISH plus MP</td>
<td>66 (NR); p<0.001</td>
<td>97 (NR)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Gonda et al (2017)<sup>51</sup></td>
<td>Cytology alone</td>
<td>32 (18 to 48)</td>
<td>100 (91 to 100)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Cytology plus FISH</td>
<td>51 (35 to 67)</td>
<td>100 (91 to 100)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Cytology plus MP</td>
<td>51 (35 to 67)</td>
<td>100 (91 to 100)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Cytology plus FISH plus MP</td>
<td>73 (59 to 86)</td>
<td>100 (91 to 100)</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

^a p-value compared to cytology alone
CI: confidence interval; FISH: fluorescence in situ hybridization; MP: mutation profiling; NPV: negative predictive value; NR: not reported; PPV: positive predictive value.

Tables 9 and 10 display notable gaps identified in each study.
Table 9. Relevance Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Populationa</th>
<th>Interventionb</th>
<th>Comparatore</th>
<th>Outcomesd</th>
<th>Duration of Follow-Upé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khosravi et al (2018)⁹⁵</td>
<td>4. Participants had "biliary strictures," which may include conditions other than solid pancreatic lesions</td>
<td></td>
<td></td>
<td>3. Positive and negative predictive values not calculated</td>
<td></td>
</tr>
<tr>
<td>Kushnir et al (2018)⁵⁰</td>
<td>4. Participants had "biliary strictures," which may include conditions other than solid pancreatic lesions</td>
<td></td>
<td></td>
<td>3. Positive and negative predictive values not calculated</td>
<td></td>
</tr>
<tr>
<td>Gonda et al (2017)⁵¹</td>
<td>4. Participants had "biliary strictures," which may include conditions other than solid pancreatic lesions</td>
<td></td>
<td></td>
<td>3. Positive and negative predictive values not calculated</td>
<td></td>
</tr>
</tbody>
</table>

The evidence limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

a Population key: 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.

b Intervention key: 1. Classification thresholds not defined; 2. Version used unclear; 3. Not intervention of interest.

c Comparator key: 1. Classification thresholds not defined; 2. Not compared to credible reference standard; 3. Not compared to other tests in use for same purpose.

d Outcomes key: 1. Study does not directly assess a key health outcome; 2. Evidence chain or decision model not explicated; 3. Key clinical validity outcomes not reported (sensitivity, specificity and predictive values); 4. Reclassification of diagnostic or risk categories not reported; 5. Adverse events of the test not described (excluding minor discomforts and inconvenience of venipuncture or noninvasive tests).

e Follow-Up key: 1. Follow-up duration not sufficient with respect to natural history of disease (true positives, true negatives, false positives, false negatives cannot be determined).

Table 10. Study Design and Conduct Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Selectiona</th>
<th>Blindingb</th>
<th>Delivery of Testc</th>
<th>Selective Reportingd</th>
<th>Data Completenesse</th>
<th>Statisticalf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khosravi et al (2018)⁹⁵</td>
<td>1. No discussion whether cytologists blinded to other test results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kushnir et al (2018)⁵⁰</td>
<td>1. No discussion whether cytologists blinded to other test results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonda et al (2017)⁵¹</td>
<td>1. No discussion whether cytologists blinded to other test results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The evidence limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

a Selection key: 1. Selection not described; 2. Selection not random or consecutive (ie, convenience).

b Blinding key: 1. Not blinded to results of reference or other comparator tests.

c Test Delivery key: 1. Timing of delivery of index or reference test not described; 2. Timing of index and comparator tests not same; 3. Procedure for interpreting tests not described; 4. Expertise of evaluators not described.

e Data Completeness key: 1. Inadequate description of indeterminate and missing samples; 2. High number of samples excluded; 3. High loss to follow-up or missing data.

f Statistical key: 1. Confidence intervals and/or p values not reported; 2. Comparison to other tests not reported.

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.
Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

No randomized controlled trials were identified that evaluated the clinical utility of PancraGEN for the classification of solid pancreaticobiliary lesions.

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

An incremental benefit was seen in increased sensitivity when FISH plus MP were added to cytology alone. The sensitivity with cytology plus FISH plus MP averaged around 70%.

Whether the tradeoff between avoiding biopsies and the potential for missed cancers is worthwhile depends, in part, on patient and physician preferences. In the context of pancreaticobiliary cancers, overall survival depends on detection of these cancers at early, more treatable stages.

While there is indirect evidence that cytology plus FISH plus MP may predict more solid pancreaticobiliary lesions compared with cytology alone, the sensitivity is not sufficiently high enough to identify which patients can forego biopsy. Missing a solid pancreaticobiliary lesion diagnosis at a rate of 30%, is not inconsequential. A delay in diagnosis would delay potential treatment (surgery and/or chemotherapy).

Section Summary: Solid Pancreaticobiliary Lesions
The evidence for the clinical validity of using PancraGEN to evaluate solid pancreaticobiliary lesions consists of several retrospective studies. One study evaluated the performance characteristics of PancraGEN for classifying solid pancreatic lesions while the other two evaluated the classification of biliary strictures. Biliary strictures may be caused by solid pancreaticobiliary lesions but may have other causes. The authors of the studies did not specify what proportion of patients with biliary stricture had solid pancreaticobiliary lesions. Compared to cytology alone, the use of cytology plus FISH plus PancraGEN increased sensitivity significantly. The incremental value of using cytology plus FISH plus PancraGEN over cytology plus FISH is unclear. The manufacturer has indicated that the technology is meant as an adjunct to first-line testing, but no algorithm for combining PancraGEN with consensus guidelines for decision making has been proposed, nor has first-line testing been defined as cytology alone or cytology plus FISH. There are no prospective studies demonstrating that PancraGEN can affect patient-relevant outcomes (eg, survival, time to tumor recurrence, reduction in unnecessary surgeries). The evidence reviewed does not demonstrate that PathFinderTG has incremental clinical value for the diagnosis of solid pancreatic lesions and associated cancer.

Whether the tradeoff between avoiding biopsies and the potential for missed cancers is worthwhile depends, in part, on patient and physician preferences. In the context of pancreaticobiliary cancers, overall survival depends on detection of these cancers at early, more treatable stages. While there is indirect evidence that cytology plus FISH plus MP may predict more solid pancreaticobiliary lesions compared with cytology alone, the sensitivity is not
sufficiently high enough to identify which patients can forego biopsy. Missing a solid pancreaticobiliary lesion diagnosis at a rate of 30%, is not inconsequential. A delay in diagnosis would delay potential treatment (surgery and/or chemotherapy).

SUMMARY OF EVIDENCE
For individuals who have pancreatic cysts who do not have a definitive diagnosis after first-line evaluation and who receive standard diagnostic and management practices plus topographic genotyping (PancraGEN molecular testing), the evidence includes retrospective studies of clinical validity and clinical utility. Relevant outcomes are overall survival, disease-specific survival, test validity, change in disease status, morbid events, and quality of life. The best evidence regarding incremental clinical validity comes from the National Pancreatic Cyst Registry report that compared PancraGEN performance characteristics with current international consensus guidelines and provided preliminary but inconclusive evidence of a small incremental benefit for PancraGEN. The analyses from the registry study included only a small proportion of enrolled patients, relatively short follow-up time for observing malignant transformation, and limited data on cases where the PancraGEN results were discordant with international consensus guidelines. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have Barrett’s esophagus who receive standard prognostic techniques plus topographic genotyping (BarreGEN molecular testing), the evidence includes a systematic review. Relevant outcomes are overall survival, disease-specific survival, test validity, change in disease status, morbid events, and quality of life. The systematic review identified no studies relevant to this evidence review. Two observational studies were excluded based on selection criteria because it was unclear whether the test used was specifically BarreGEN or whether the BarreGEN prognostic algorithm was applied for classification. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have solid pancreaticobiliary lesions who do not have a definitive diagnosis after first-line evaluation and who receive standard diagnostic and management practices plus topographic genotyping (PancraGEN molecular testing), the evidence includes 3 observational studies of clinical validity. Relevant outcomes are overall survival, disease-specific survival, test validity, change in disease status, morbid events, and quality of life. Two of the 3 studies had populations with biliary strictures and the other had a population of patients with solid pancreaticobiliary lesions. The studies reported higher sensitivities when PancraGEN and FISH testing was added to cytology results compared with cytology alone. However, the inclusion of patients in the analysis who may not have solid pancreaticobiliary lesions (those with biliary strictures not caused by solid pancreaticobiliary lesions) limits the interpretation of the results. While preliminary results showed a potential incremental benefit for PancraGEN plus FISH plus cytology, further research focusing on patients with solid pancreaticobiliary lesions is warranted. Whether the tradeoff between avoiding biopsies and the potential for missed cancers is worthwhile depends, in part, on patient and physician preferences. In the context of pancreaticobiliary cancers, overall survival depends on detection of these cancers at early, more treatable stages. While there is indirect evidence that cytology plus FISH plus MP may predict more solid pancreaticobiliary lesions compared with cytology alone, the sensitivity is not sufficiently high enough to identify which patients can forego biopsy. Missing a solid pancreaticobiliary lesion diagnosis at a rate of 30%, is not inconsequential. A delay in diagnosis would delay potential treatment (surgery and/or chemotherapy). The evidence is insufficient to determine the effects of the technology on health outcomes.
PRACTICE GUIDELINES AND POSITION STATEMENTS

American Gastroenterological Association
The American Gastroenterological Association (AGA; 2015) published guidelines on the diagnosis and management of asymptomatic neoplastic pancreatic cysts, based on findings from a technical review. The technical review stated the following about molecular testing: "Case series have confirmed that malignant cysts have a greater number and quality of molecular alterations, but no study has been properly designed to identify how the test performs in predicting outcome with regard to need for surgery, surveillance, or predicting interventions leading to improved survival." The AGA guidelines also stated: "Molecular techniques to evaluate pancreatic cysts remain an emerging area of research, and the diagnostic utility of these tests is uncertain."

AGA (2011) published a medical position statement on the management of Barrett’s esophagus. Based on findings from a technical review, AGA recommended: "against the use of molecular biomarkers to confirm the histological diagnosis of dysplasia or as a method of risk stratification for patients with Barrett's esophagus at this time (weak recommendation, low-quality evidence)."

American College of Gastroenterology
The American College of Gastroenterology (2015) released guidelines on the diagnosis and management of Barrett’s esophagus. The guidelines stated: "Given the complexity and diversity of alterations observed to date in the progression sequence, a panel of biomarkers may be required for risk stratification. At the present time, no biomarkers or panels of biomarkers are ready for clinical practice. In order to become part of the clinical armamentarium, biomarkers will have to be validated in large prospective cohorts."

The College (2018) published guidelines on the diagnosis and management of pancreatic cysts. The guidelines stated that the evidence for the use of molecular biomarkers for identifying high-grade dysplasia or pancreatic cancer is insufficient to recommend their routine use. However, molecular markers may help identify intraductal papillary mucinous neoplasms and mucinous cystic neoplasms in cases with an unclear diagnosis and if results are likely to change the management (conditional recommendation; very low quality evidence).

National Comprehensive Cancer Network
Current National Comprehensive Cancer Network (NCCN) guidelines for pancreatic adenocarcinoma were updated in 2019 and recommend that clinicians consider molecular tumor analysis in patients with metastatic disease.

NCCN guidelines for central nervous system cancers (v.1.2018), and esophageal and esophagogastric junction cancers (v.2.2018), do not include recommendations for molecular anatomic pathology or integrated molecular pathology.

Network guidelines on hepatobiliary cancers(v.2.2019) state that molecular testing may be considered in the following situations:

- Isolated intrahepatic mass (imaging characteristics consistent with malignancy but not consistent with hepatocellular carcinoma) that is unresectable or indicative of metastatic disease
- Extrahepatic cholangiocarcinoma that is unresectable or indicative of metastatic disease.
U.S. PREVENTIVE SERVICES TASK FORCE RECOMMENDATIONS

Not applicable.

ONGOING AND UNPUBLISHED CLINICAL TRIALS

Some currently unpublished trials that might impact this policy are listed in Table 11.

Table 11. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT03855800</td>
<td>Molecular Detection of Advanced Neoplasia in Pancreatic Cysts (IN-CYST)</td>
<td>800</td>
<td>Dec 2026</td>
</tr>
<tr>
<td>NCT01202136</td>
<td>The Clinical, Radiologic, Pathologic and Molecular Marker Characteristics of Pancreatic Cysts Study (PCyst)</td>
<td>450</td>
<td>Sep 2025</td>
</tr>
<tr>
<td>NCT02110498</td>
<td>Early Detection of Pancreatic Cystic Neoplasms</td>
<td>3000</td>
<td>Mar 2024</td>
</tr>
<tr>
<td>NCT02692898</td>
<td>Biomarker Analysis of Central Nervous System Tumors</td>
<td>500</td>
<td>Nov 2025</td>
</tr>
<tr>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02078544</td>
<td>Integrated Molecular Analysis of Cancer in Gynaecologic Oncology (IMAC-GO)</td>
<td>700</td>
<td>Aug 2018 (unknown)</td>
</tr>
<tr>
<td>NCT02000999</td>
<td>The Diagnostic Yield of Malignancy Comparing Cytology, FISH and Molecular Analysis of Cell Free Cytology Brush Supernatant in Patients With Biliary Strictures Undergoing Endoscopic Retrograde Cholangiography (ERC): A Prospective Study</td>
<td>110</td>
<td>Jan 2019 (completed)</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

CODING

The following codes for treatment and procedures applicable to this policy are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

CPT/HCPCS

81479 Unlisted molecular pathology procedure
84999 Unlisted chemistry procedure
89240 Unlisted miscellaneous pathology test
0108U Gastroenterology (Barrett’s esophagus), whole slide digital imaging including morphometric analysis, computer-assisted quantitative immunolabeling of 9 protein biomarkers (p16, AMACR, p53, CD68, COX-2, CD45RO, HIF1a, HER-2, K20) and morphology, formalin-fixed paraffin-embedded tissue, algorithm reported as risk of progression to high grade dysplasia or cancer

- The suggested CPT code for this test is: 84999.

Diagnoses

Experimental / Investigational for all diagnoses related to this medical policy.

REVISIONS

08-17-2016
Updated Description section.

In Policy section:
- Removed ", suspected or known gliomas," to read, "Molecular testing using the PathFinderTG® system is considered experimental / investigational for all indications including the evaluation of pancreatic cyst fluid and Barrett’s esophagus."
- Added Policy Guidelines regarding genetic counseling.

Updated Rationale section.
Updated References section.

08-15-2017
Updated Description section.

In Policy section:
- Updated Policy Guidelines.

Updated Rationale section.
Updated References section.

Updated Appendix section.

10-25-2017
In Coding section:
- Added CPT code: 81479.

12-20-2018
Policy published to the bcbsks.com website on 11-20-2018 with an effective date of 12-20-2018.

Policy title changed from "PathFinderTG Molecular Testing"

Updated Description section.

In Policy section:
- Added “solid pancreaticobiliary lesions” to read, “Molecular testing using the PathFinderTG system is considered experimental / investigational for all indications including the evaluation of pancreatic cyst fluid, Barrett’s esophagus, or solid pancreaticobiliary lesions.”

Updated Rationale section.

In Coding section:
- Added coding bullet.

Updated References section.

Removed Appendix section.

08-28-2019
Updated Description section.

Updated Rationale section.

Updated References section.

10-01-2019
In Coding section:
- Added PLA code: 0108U.

REFERENCES

Other References

1. Blue Cross and Blue Shield Pathology Liaison Committee, July 2016.