Title: Percutaneous Vertebroplasty and Sacroplasty

State and Federal mandates and health plan member contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. To verify a member's benefits, contact Blue Cross and Blue Shield of Kansas Customer Service.

The BCBSKS Medical Policies contained herein are for informational purposes and apply only to members who have health insurance through BCBSKS or who are covered by a self-insured group plan administered by BCBSKS. Medical Policy for FEP members is subject to FEP medical policy which may differ from BCBSKS Medical Policy.

The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents of Blue Cross and Blue Shield of Kansas and are solely responsible for diagnosis, treatment and medical advice.

If your patient is covered under a different Blue Cross and Blue Shield plan, please refer to the Medical Policies of that plan.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With symptomatic</td>
<td>• Vertebroplasty</td>
<td>• Conservative management</td>
<td>• Symptoms</td>
</tr>
<tr>
<td>osteoporotic vertebral fractures</td>
<td></td>
<td></td>
<td>• Functional outcomes</td>
</tr>
<tr>
<td>between 6 weeks and 1 year old</td>
<td></td>
<td></td>
<td>• Quality of life</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Hospitalizations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Medication use</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Treatment-related morbidity</td>
</tr>
</tbody>
</table>
DESCRIPTION

Percutaneous vertebroplasty is an interventional technique involving the fluoroscopically guided injection of polymethylmethacrylate (PMMA) into a weakened vertebral body. The technique has been investigated to provide mechanical support and symptomatic relief in patients with osteoporotic vertebral compression fractures or in those with osteolytic lesions of the spine (eg, multiple myeloma or metastatic malignancies). Percutaneous vertebroplasty has also been investigated as a technique to limit blood loss related to surgery. Injection of PMMA is also being investigated as a treatment of sacral insufficiency fractures.

OBJECTIVE

The objective of this policy is to evaluate whether vertebroplasty or sacroplasty improves the net health outcome in individuals with osteoporotic vertebral compression fractures or sacral insufficiency fractures.

BACKGROUND

Osteoporotic Fracture

Vertebral Compression Fracture

Osteoporotic compression fractures are common. It is estimated that up to one-half of women and approximately one-quarter of men will have a vertebral fracture at some point in their lives. However, only about one-third of vertebral fractures actually reach clinical diagnosis, and most symptomatic fractures will heal within a few weeks or 1 month. Nonetheless, some individuals with acute fractures will have severe pain and decreased function that interferes with ability to ambulate and is not responsive to usual medical management. In addition, a minority of patients will exhibit chronic pain following osteoporotic compression fracture that presents challenges for medical management.

Treatment

Chronic symptoms do not tend to respond to the management strategies for acute pain such as bedrest, immobilization or bracing device, and analgesic medication, sometimes including narcotic analgesics. The source of chronic pain after vertebral compression...
fracture may not be from the vertebra itself but may be predominantly related to strain on muscles and ligaments secondary to kyphosis. This type of pain frequently does not improve with analgesics and may be better addressed through exercise. Improvements in pain and ability to function are the principal outcomes of interest for treatment of osteoporotic fractures.

Sacral Insufficiency Fractures
Sacral insufficiency fractures (SIFs) are the consequence of stress on weakened bone and often cause low back pain in the elderly population. Osteoporosis is the most common risk factor for SIF. Spontaneous fracture of the sacrum in patients with osteoporosis was described by Lourie in 1982 and presents as lower back and buttock pain with or without referred pain in the legs. Although common, SIFs can escape detection due to low provider suspicion and poor sensitivity on plain radiographs, slowing the application of appropriate intervention.

Treatment
Similar interventions are used for sacral and vertebral fractures and include bedrest, bracing, and analgesics. Initial clinical improvements may occur quickly; however, resolution of all symptoms may not occur for 9 to 12 months.

Vertebral and Sacral Body Metastasis
Metastatic malignant disease of the spine generally involves the vertebrae/sacrum, with pain being the most frequent complaint.

Treatment
While radiation and chemotherapy are frequently effective in reducing tumor burden and associated symptoms, pain relief may be delayed days to weeks, depending on tumor response. Further, these approaches rely on bone remodeling to regain strength in the vertebrae/sacrum, which may necessitate supportive bracing to minimize the risk of vertebral/sacral collapse during healing. Improvements in pain and function are the primary outcomes of interest for treatment of bone malignancy with percutaneous vertebroplasty or sacroplasty.

Surgical Treatment Options
Percutaneous Vertebroplasty: Vertebroplasty is a surgical procedure that involves the injection of synthetic cement (eg, polymethylmethacrylate [PMMA], bis-glycidal dimethacrylate [Cortoss]) into a fractured vertebra. It has been suggested that vertebroplasty may provide an analgesic effect through mechanical stabilization of a fractured or otherwise weakened vertebral body. However, other mechanisms of effect have been postulated, including thermal damage to intraosseous nerve fibers.

Percutaneous Sacroplasty: Sacroplasty evolved from the treatment of insufficiency fractures in the thoracic and lumbar vertebrae with vertebroplasty. The procedure, essentially identical to vertebroplasty, entails guided injection of polymethylmethacrylate
(PMMA) through a needle inserted into the fracture zone. While first described in 2000 as a
treatment for symptomatic sacral metastatic lesions,5,6 it is most often described as a
minimally invasive alternative to conservative management7-9 for SIFs.

Pain and function are subjective outcomes and, thus, may be susceptible to placebo
effects. Furthermore, the natural history of pain and disability associated with these
conditions may vary. Therefore, controlled comparison studies would be valuable to
demonstrate the clinical effectiveness of vertebroplasty and sacroplasty over and above
any associated nonspecific or placebo effects and to demonstrate the effect of treatment
compared with alternatives such as continued medical management.

In all clinical situations, adverse effects related to complications from vertebroplasty and
sacroplasty are the primary harms to be considered. Principal safety concerns relate to the
incidence and consequences of leakage of the injected PMMA or other injectate4.

REGULATORY STATUS
Vertebroplasty is a surgical procedure and, as such, is not subject to U.S. Food and Drug
Administration (FDA) approval.

PMMA bone cement was available as a drug product before enactment of FDA’s device
regulation and was at first considered what FDA terms a “transitional device.” It was
transitioned to a class III device requiring premarketing applications. Several orthopedic
companies have received approval of their bone cement products since 1976. In October
1999, PMMA was reclassified from class III to class II, which requires future 510(k)
submissions to meet “special controls” instead of “general controls” to assure safety and
effectiveness. Thus, use of PMMA in vertebroplasty represented an off-label use of an FDA-
regulated product before 2005. In 2005, PMMA bone cements such as Spine-Fix®
Biomimetic Bone Cement and Osteopal® V were issued 510(k) marketing clearance for the
fixation of pathologic fractures of the vertebral body using vertebroplasty or kyphoplasty
procedures.

The use of PMMA in sacroplasty represents an off-label use of an FDA-regulated product
(bone cements such as Spine-Fix® Biomimetic Bone Cement and Osteopal® V), as the
510(k) marketing clearance was for the fixation of pathologic fractures of the vertebral
body using vertebroplasty or kyphoplasty procedures. Sacroplasty was not included. FDA
product code: NDN.

In May 2009, Cortoss® (Stryker) Bone Augmentation Material was cleared for marketing
by FDA through the 510(k) process. Cortoss® is a nonresorbable synthetic material that is
a composite resin-based, bis-glycidal dimethacrylate. FDA classifies this product as a PMMA
bone cement.
In February 2010, the Parallax® Contour® Vertebral Augmentation Device (ArthroCare) was cleared for marketing by FDA through the 510(k) process. The device creates a void in cancellous bone that can then be filled with bone cement. FDA product code: HXG.

POLICY

A. Percutaneous vertebroplasty may be considered **medically necessary** for:

1. The treatment of severe pain due to osteolytic lesions of the spine related to multiple myeloma or metastatic malignancies; **OR**

2. The treatment of symptomatic osteoporotic vertebral fractures that have failed to respond to conservative treatment (eg, rest, analgesics, physical therapy) for at least 6 weeks; **OR**

3. The treatment of symptomatic osteoporotic vertebral fractures that are less than 6 weeks in duration that have led to hospitalization or persist at a level that prevents ambulation.

B. Percutaneous vertebroplasty is considered **experimental / investigational** for all other indications, including use in acute vertebral fractures due to trauma.

C. Percutaneous sacroplasty is considered **experimental / investigational** for all indications, including use in sacral insufficiency fractures due to osteoporosis and spinal lesions due to metastatic malignancies or multiple myeloma.

RATIONALE

The most recent literature review was performed through February 18, 2019.

Evidence reviews assess the clinical evidence to determine whether the use of technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life (QOL), and ability to function - including benefits and harms. Every clinical condition has specific outcomes that are important to patients and managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of technology, two domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large.
enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

Percutaneous Vertebroplasty for Vertebral Compression Fractures of Between Six Weeks and One Year Old

Clinical Context and Therapy Purpose

The purpose of vertebroplasty is to provide a treatment option that is an alternative to or an improvement on existing therapies in patients with symptomatic osteoporotic or osteolytic vertebral fractures between six weeks and one year old.

The question addressed in this evidence review is: does vertebroplasty improve the net health outcome in individuals with symptomatic osteolytic vertebral fractures between six weeks and one year old?

The following PICOTS were used to select literature to inform this review.

Patients

The relevant population of interest are individuals with symptomatic osteoporotic or osteolytic vertebral fractures between six weeks and one year old. With acute fractures, these individuals experience severe pain, decreased ambulatory function, and a lessened response to conservative medical management. Risk factors for osteoporotic or osteolytic vertebral fractures can include osteopenia, osteoporosis, advanced age, inactivity, corticosteroid use, female sex, and depression.

Interventions

The therapy being considered is vertebroplasty, a procedure for stabilizing compression fractures in the spine, during which bone cement is injected into the fractured vertebra through a small hole in the skin in order to relieve back pain. The vertebroplasty procedure is performed in an outpatient setting by interventional radiologists or orthopedic surgeons.

Comparators

Comparators of interest include conservative management. Conservative management includes measures to reduce pain and improve mobility. Physical therapy, analgesics, narcotics, and hormone treatments can be prescribed to achieve this. Bed rest and braces may also be utilized as conservative management; however, these modalities are associated with prolonged immobilization which can further exacerbate bone loss and fail to relieve systems. Patients who receive conservative management are typically managed by pediatricians, physical therapists, and primary care providers in an outpatient clinical setting.

Outcomes

The general outcomes of interest are symptoms, functional outcomes, QOL, hospitalizations, medication use, and treatment-related morbidity. Negative outcomes can include complications with sedation, further injury during transfer to the radiology table, and the possibility of abuse after the prescription of narcotics. The outcomes of interest for vertebroplasty as a treatment for symptomatic vertebral fractures have varying follow-up times to fully examine the impact on the patient, ranging from shorter term outcomes like medication use to outcomes that require extended follow-up, such as functional outcomes. Given that the existing literature evaluating vertebroplasty as a treatment for symptomatic vertebral fractures between six weeks and one year
old has varying lengths of follow-up, ranging from six months to two years, follow-up timing of one year is appropriate to demonstrate efficacy.

Disability, a major factor on QOL, is measured using various tools throughout the literature. Three such tools include the Roland-Morris Disability Questionnaire (RMDQ),10, the visual analogue scale (VAS),11, and QUALEFFO. The RMDQ is a self-administered disability measure in which greater levels of disability are reflected by higher numbers on a 24-point scale and on VAS. The RMDQ has been shown to yield reliable measurements, which are valid for inferring the level of disability, and to be sensitive to change over time for groups of patients with low back pain. VAS is commonly used as the outcome measure for such studies. It is usually presented as a 100-mm horizontal line on which the patient's pain intensity is represented by a point between the extremes of "no pain at all" and "worst pain imaginable." With QUALEFFO, QOL measured by the scale 0 to 100, higher scores indicating worse QOL.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:

a. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;

b. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.

c. To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.

d. Studies with duplicative or overlapping populations were excluded.

This evidence review was informed by a TEC Assessment (2000), which was updated periodically through 2010.12,13,14,15,16,17. Subsequent evidence includes a number of RCTs, two of which included a sham control, and numerous RCTs that compared vertebroplasty with conservative management.

Systematic Reviews
Buchbinder et al (2018) published a Cochrane review of the literature up to November 201418. Studies compared vertebroplasty vs placebo (2 studies with 209 randomized participants), usual care (6 studies with 566 randomized participants), and kyphoplasty (4 studies with 545 randomized participants). The majority of participants were female, between 63.3 and 80 years of age, with symptom duration range from 1 week to more than 6 months. At 1 month, disease-specific QOL measured by the QUALEFFO (scale 0 to 100, higher scores indicating worse QOL) was 0.40 points worse in the vertebroplasty group. Based upon moderate quality evidence from 3 trials (1 placebo, 2 usual care, 281 participants) with up to 12 months follow-up, it is unclear if vertebroplasty increases the risk of new symptomatic vertebral fractures. Similarly, based upon moderate quality evidence from two placebo-controlled trials, it is unclear to what extent risk of other adverse events exist. There were 3/106 adverse events observed in the vertebroplasty group compared with 3/103 in the placebo group; RR 1.01 (95% CI: 0.21 to 4.85). Serious adverse events that have been reported with vertebroplasty included osteomyelitis, cord compression, thecal sac injury, and respiratory failure.

Staples et al (2011) conducted a patient-level meta-analysis of the 2 sham-controlled trials to determine whether vertebroplasty is more effective than sham in specific subsets of patients.19 This subset analysis focused on duration of pain (≤6 weeks vs >6 weeks) and severity of pain (score <8 or ≥8 on an 11-point numeric rating scale). The analysis included 209 participants (78 from the
Australian trial, 131 from the U.S. trial); 27% had pain of recent onset and 47% had severe pain at baseline. The primary outcome measures (pain scores and function on the RMDQ at one month) did not differ significantly between groups. Responder analyses were also conducted based on a 3-unit improvement in pain scores, a 3-unit improvement in RMDQ scores, and a 30% improvement in each of the pain and disability outcomes. The only difference observed between groups was a trend in the vertebroplasty group to achieve at least 30% improvement in pain scores (relative risk, 1.32; 95% confidence interval [CI], 0.98 to 1.76; p=0.07), a result that may have been confounded by the greater use of opioid medications in that group.

Xie et al (2017), in a meta-analysis of RCTs, evaluated the efficacy and safety in percutaneous vertebroplasty and conservative treatment for patients with osteoporotic vertebral compression fractures.19, Thirteen studies were selected (n=1231 patients; 623 to vertebroplasty; 608 to conservative treatment). Outcomes included pain relief (from one week to six months), QOL assessments, and the rate of adjacent-level vertebral fracture. Vertebroplasty was superior for pain relief at one week and at one month. It was inferior to conservative treatment for pain relief at six months. Vertebroplasty showed improvement over conservative treatment for QOL, as measured using the Quality of Life Questionnaire of the European Foundation for Osteoporosis. No statistically significant differences were found between treatments for the rate of adjacent-level vertebral fractures. Limitations included the inclusion of several studies with inadequate blinding and heterogenous reporting of patient characteristics outcomes.

Table 1. Characteristics of Systematic Reviews and Meta-Analyses on Percutaneous Vertebroplasty for Vertebral Compression Fractures of Between Six Weeks and One Year Old

<table>
<thead>
<tr>
<th>Study</th>
<th>Dates</th>
<th>Trials</th>
<th>Participants</th>
<th>Intervention</th>
<th>N (Range)</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buchbinder</td>
<td>2007-2016</td>
<td>21</td>
<td>Patients with osteoporotic vertebral fractures (mean age ranged from 63.3 to 80 years; symptom duration ranged from 1 week to > six months.</td>
<td>Vertebroplasty</td>
<td>2862 (46-404)</td>
<td>RCT</td>
</tr>
<tr>
<td>Staples (2011)</td>
<td>NR</td>
<td>2</td>
<td>Participants with 1-2 painful osteoporotic vertebral fractures >12 months duration and unhealed, as confirmed by MRI, were randomly assigned to vertebroplasty or to a sham procedure.</td>
<td>Vertebroplasty vs placebo (5 studies); kyphoplasty (7 studies); facet joint steroid injection (1)</td>
<td>209 (78-131)</td>
<td>RCT</td>
</tr>
<tr>
<td>Xie (2017)</td>
<td>NR-2017</td>
<td>13</td>
<td>Patients with OVCFs</td>
<td>PVP vs conservative treatment</td>
<td>2561 (NR)</td>
<td>RCT</td>
</tr>
</tbody>
</table>

NR: not reported; OVCF: osteoporotic vertebral compression fracture; PVP: percutaeous vertebroplasty; RCT: randomized controlled trial

Table 2. Results of Systematic Reviews and Meta-Analyses on Percutaneous Vertebroplasty for Vertebral Compression Fractures of Between Six Weeks and One Year Old

<table>
<thead>
<tr>
<th>Study</th>
<th>Quality of Life</th>
<th>New Fractures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QUALEFFO</td>
<td></td>
</tr>
<tr>
<td>Buchbinder (2018)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo group at 1-month, score (N)</td>
<td>4.58 (71)</td>
<td>NR</td>
</tr>
<tr>
<td>Vertebrplasty group at 1-month, score (N)</td>
<td>5.38 (71)</td>
<td>NR</td>
</tr>
<tr>
<td>Absolute change between groups</td>
<td>0.4% worse (5% worse-5% better [n=71])</td>
<td>NR</td>
</tr>
<tr>
<td>Relative change between groups</td>
<td>0.7% worse (9% worse-8% [n=71])</td>
<td>NR</td>
</tr>
<tr>
<td>N. Intervention group (%)</td>
<td>NR</td>
<td>28 (19.58)</td>
</tr>
<tr>
<td>N. Placebo group (%)</td>
<td>NR</td>
<td>19 (50.00)</td>
</tr>
</tbody>
</table>
Study Quality of Life New Fractures

<table>
<thead>
<tr>
<th>RR (CI)</th>
<th>NR</th>
<th>1.47 (0.39-5.50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of Pain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staples (2011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean change score (SD) of pain, at 2 weeks, PVP vs placebo</td>
<td>2.2 (2.8) vs 2.5 (3.0)</td>
<td>NR</td>
</tr>
<tr>
<td>Adjusted between group difference (CI) at 2 weeks</td>
<td>~0.2 (~0.9-0.6)</td>
<td>NR</td>
</tr>
<tr>
<td>Mean change score (SD) of pain, at 1 month, PVP vs placebo</td>
<td>2.08 (3.0) vs 2.2 (3.2)</td>
<td>NR</td>
</tr>
<tr>
<td>Adjusted between group difference (CI) at 2 weeks</td>
<td>0.6 (~0.2-1.4)</td>
<td>NR</td>
</tr>
<tr>
<td>Xie (2017)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At 1-week (vertebroplasty superior), MD (CI)</td>
<td>1.36 (0.55-2.17)</td>
<td>NR</td>
</tr>
<tr>
<td>At 1-month (vertebroplasty superior), MD (CI)</td>
<td>1.56 (0.43-2.70)</td>
<td>NR</td>
</tr>
<tr>
<td>At 6-months(vertebroplasty inferior), MD (CI)</td>
<td>-1.59 (-2.9 -0.27)</td>
<td>NR</td>
</tr>
<tr>
<td>Total (vertebroplasty superior), MD (CI)</td>
<td>-5.03 (7.94 -2.12)</td>
<td>NR</td>
</tr>
</tbody>
</table>

CI: 95% confidence interval; MD: mean difference; (score <8 or ≥8 on an 11-point numeric rating scale); NR: not reported; PVP: percutaneous vertebroplasty; QUALEFFO-41 Questionnaire: a quality of life questionnaire in patients with vertebral fractures; RR: relative risk; SD: standard deviation.

Randomized Controlled Trials

Vertebroplasty vs Medical Management with Sham Controls

Two sham-controlled trials introduced above compared vertebroplasty with medical management using a sham control (that included local anesthetic), which mimicked the vertebroplasty procedure up to the point of cement injection. Buchbinder et al (2018) reported on results for a 4-center, randomized, double-blind, sham-controlled trial with 78 patients with 1 or 2 painful osteoporotic vertebral fractures with a duration of less than 1 year. Patients were assigned to vertebroplasty or sham procedure (ie, injection of local anesthetic into the facet capsule and/or periosteum). Ninety-one percent of participants completed six months of follow-up. The participants, investigators (other than the radiologists performing the procedure), and outcome assessors were blinded to the treatment assignment. Blinding was maintained through 24-month follow-up of this trial.

Kallmes et al (2009) conducted a multicenter, randomized, double-blind, sham-controlled, Investigational Vertebroplasty Safety and Efficacy Trial in which 131 participants with 1 to 3 painful osteoporotic vertebral fractures were assigned to vertebroplasty or sham procedure (injection of local anesthetic into the facet capsule and/or periosteum). Participants had back pain for no more than 12 months and had a current pain rating of at least 3 on VAS at baseline. Participants were evaluated at various time points to one year postprocedure. Ninety-seven percent completed a 1-month follow-up; 95% completed 3 months. The primary outcomes were RMDQ scores and average back pain intensity during the preceding 24 hours at 1 month, with a reduction of 30% in RMDQ and VAS pain scores considered a clinically meaningful difference.

The primary outcome was overall pain measured on aVAS from 0 to 10, with 1.5 points representing the minimal clinically important difference. For the primary outcome, reviewers reported no significant differences in VAS pain score at 3, 12, or 24 months. With reductions in pain and improvements in QOL observed in both groups, the authors concluded vertebroplasty provided no benefit.

Kallmes et al (2009) conducted a multicenter, randomized, double-blind, sham-controlled, Investigational Vertebroplasty Safety and Efficacy Trial in which 131 participants with 1 to 3 painful osteoporotic vertebral fractures were assigned to vertebroplasty or sham procedure (injection of local anesthetic into the facet capsule and/or periosteum). Participants had back pain for no more than 12 months and had a current pain rating of at least 3 on VAS at baseline. Participants were evaluated at various time points to one year postprocedure. Ninety-seven percent completed a 1-month follow-up; 95% completed 3 months. The primary outcomes were RMDQ scores and average back pain intensity during the preceding 24 hours at 1 month, with a reduction of 30% in RMDQ and VAS pain scores considered a clinically meaningful difference.
For the primary endpoints at one month, there were no significant between-group differences. There was a trend toward a higher clinically meaningful improvement in pain at 1 month (30% reduction from baseline) in the vertebroplasty group (64% vs 48%, respectively; p=0.06). At 3 months, 51% from the control group and 13% in the vertebroplasty group crossed over (p<0.001). By 1 year, 16% of patients who underwent vertebroplasty and 60% of control subjects had crossed over to the alternative procedure (p<0.001). The as-treated analysis found no significant difference in RMDQ or pain scores between the two groups. Intention-to-treat analysis found a modest 1-point difference in pain rating and no significant difference in RMDQ score. There was a significant difference in the percentage of patients showing a 30% or greater improvement in pain (70% of patients randomized to vertebroplasty vs 45% of patients randomized to the control group). One limitation of this study is that at 14 days, 63% of patients in the control group correctly guessed they had the control intervention, and 51% of patients in the vertebroplasty group correctly guessed they had the vertebroplasty.

Firanescu et al (2018) published the results of a randomized, double-blind, sham-controlled clinical trial performed in 4 community hospitals in the Netherlands from 2011 to 2015. The main outcome measured was mean reduction in VAS scores at 1 day, 1 week, and 1, 3, 6, and 12 months. The mean reduction in VAS score was statistically significant in the vertebroplasty and sham procedure groups at all follow-up points after the procedure compared with baseline. These changes in VAS scores did not, however, differ statistically significantly between the groups during 12 months' follow-up.

Table 3. Summary of Characteristics of Key RCT Comparing Vertebroplasty vs Medical Management with Sham Controls

<table>
<thead>
<tr>
<th>Study</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants (n)</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buchbinder (2009)21</td>
<td>US</td>
<td>4</td>
<td>2003-2008</td>
<td>Patients with 1-2 painful OCVF, duration <1 year</td>
<td>Vertebroplasty (38) vs sham procedure (40)</td>
</tr>
<tr>
<td>Kallmes (2009)22</td>
<td>US, UK, Aus</td>
<td>10</td>
<td>2004-2008</td>
<td>Participants with 1-3 painful OCVF, pain < 12 mo, current pain VAS> 3</td>
<td>Vertebroplasty (68) vs sham procedure (63)</td>
</tr>
<tr>
<td>Firanescu (2018)26</td>
<td>Netherlands</td>
<td>4</td>
<td>2011-2015</td>
<td>Participants with acute OCVF</td>
<td>Vertebroplasty (91) vs sham procedure (89)</td>
</tr>
</tbody>
</table>

OCVF: osteoporotic vertebral compression fracture; RCT: randomized controlled trial; VAS: visual analogue scale

Table 4. Summary of Results of Key RCT Comparing Vertebroplasty vs Medical Management with Sham Controls

<table>
<thead>
<tr>
<th>Study</th>
<th>VAS</th>
<th>RMDQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buchbinder (2009)21</td>
<td>N=73, at 3-months</td>
<td>Reduction: 2.6±2.9</td>
</tr>
<tr>
<td>Intervention (mean±SD)</td>
<td>Control (mean±SD)</td>
<td>Adjusted between-group difference (CI)</td>
</tr>
<tr>
<td>Kallmes (2009)22</td>
<td>Day 14 Mean difference between groups (CI)</td>
<td>0.1 (-0.8-1.1)</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>Month 1 Mean difference between groups (CI)</td>
<td>0.7 (-0.3-1.70)</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>0.19</td>
</tr>
<tr>
<td>Firanescu (2018)26</td>
<td>Day 1 Mean difference between groups (CI)</td>
<td>-0.43 (-1.17 - 0.31)</td>
</tr>
<tr>
<td></td>
<td>Week 1 Mean difference between groups (CI)</td>
<td>-0.11 (-0.85 - 0.63)</td>
</tr>
<tr>
<td></td>
<td>Month 1 Mean difference between groups (CI)</td>
<td>0.41 (-0.33 - 1.15)</td>
</tr>
<tr>
<td></td>
<td>Month 3 Mean difference between groups (CI)</td>
<td>0.21 (-0.54 - 0.96)</td>
</tr>
</tbody>
</table>
Table 5. Relevance Study Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 6 Mean difference between groups (CI)</td>
<td>0.39 (-0.33 - 1.15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 12 Mean difference between groups (CI)</td>
<td>0.45 (-0.37 - 1.24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CI: 95% confidence interval; RCT: randomized controlled trial; RMDQ: Roland-Morris Disability Questionnaire; SD: standard deviation; VAS: visual analogue score.

Study Design and Conduct Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocation</th>
<th>Blinding</th>
<th>Selective Reporting</th>
<th>Follow-Up</th>
<th>Power</th>
<th>Statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buchbinder (2009)</td>
<td>2.30% of eligible participants declined to participate, selection bias can not be ruled out.</td>
<td>2. At 14 days, >50% of participants in either arm correctly identified their intervention assignment.2.</td>
<td>4. Due to high crossover the group differences in outcomes were complicated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kallmes (2009)</td>
<td>1. At 14 days, >50% of participants in either arm correctly identified their intervention assignment.2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firanescu (2018)</td>
<td>4. Screening logs not retained.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The evidence limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

- **Population key:** 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.
- **Intervention key:** 1. Not clearly defined; 2. Version used unclear; 3. Delivery not similar intensity as comparator; 4. Not the intervention of interest.
- **Comparator key:** 1. Not clearly defined; 2. Not standard or optimal; 3. Delivery not similar intensity as intervention; 4. Not delivered effectively.
- **Outcomes key:** 1. Key health outcomes not addressed; 2. Physiologic measures, not validated surrogates; 3. No CONSORT reporting of harms; 4. Not established and validated measurements; 5. Clinical significant difference not prespecified; 6. Clinical significant difference not supported.
- **Follow-Up key:** 1. Not sufficient duration for benefit; 2. Not sufficient duration for harms.
Vertebroplasty vs Medical Management Without Sham Controls
Chen et al (2014) reported on a nonblinded RCT comparing vertebroplasty with conservative management. The trial included 89 patients with chronic compression fractures confirmed by magnetic resonance imaging and persistent severe pain for 3 months or longer. The evaluation was performed at 1 week and 1, 3, 6, and 12 months. Over the course of one year, pain scores decreased from 6.5 to 2.5 in the vertebroplasty group and from 6.4 to 4.1 in the control group (p<0.001). Complete pain relief was reported by 84.8% of patients in the vertebroplasty group and 34.9% of controls. The final Oswestry Disability Index (ODI) score was 15.0 in the vertebroplasty group and 32.1 in the conservative management group (p<0.001), and the final RMDQ score was 8.1 for vertebroplasty and 10.7 for controls (p<0.001).

Farrokhi et al (2011) reported on a blinded RCT that compared vertebroplasty with optimal medical management in 82 patients. Patients had painful osteoporotic vertebral compression fractures that were refractory to analgesic therapy for at least four weeks and less than one year. Control of pain and improvement in QOL were measured by independent raters before treatment and at 1 week and 2, 6, 12, 24, and 36 months after treatment began. Radiologic evaluation to measure vertebral body height and correction of deformity was performed before and after treatment and after 36 months of follow-up. Adverse events include new symptomatic adjacent fractures in one patient in the treatment group and six in the control group. Additionally, one patient experienced epidural cement leakage, which caused severe lower extremity pain and weakness, and had to be treated with bilateral laminectomy and evacuation of the bone cement.

Table 7. Summary of Key RCT Characteristics - Vertebroplasty vs Medical Management Without Sham Controls

<table>
<thead>
<tr>
<th>Study</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants (N)</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen (2014)</td>
<td>China</td>
<td>1</td>
<td>2007-2012</td>
<td>Patients with chronic compression fractures confirmed by MRI and persistent severe pain for <3 months (89)</td>
<td>Vertebroplasty</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conservative Management</td>
</tr>
<tr>
<td>Farrokhi (2011)</td>
<td>Iran</td>
<td>1</td>
<td>2004-2005</td>
<td>Patients with painful osteoporotic vertebral compression fractures refractory to analgesic therapy for >4, but <1 year (82)</td>
<td>Vertebroplasty</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Optimal Medical Management</td>
</tr>
</tbody>
</table>

Table 8. Summary of Key RCT Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Pain Score Overall pain (scale 0-10)</th>
<th>ODI score</th>
<th>RMDQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen (2014) (N=89)</td>
<td>2.5</td>
<td>15.0</td>
<td>8.1</td>
</tr>
<tr>
<td>Intervention Group, Pooled at 1-year</td>
<td>P<0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Group, Pooled at 1-year</td>
<td>4.1</td>
<td>32.1</td>
<td>10.7</td>
</tr>
<tr>
<td>P-value</td>
<td></td>
<td>P<0.001</td>
<td></td>
</tr>
<tr>
<td>Farrokhi (2011)</td>
<td>VAS Score</td>
<td>-14.0</td>
<td>-12.82</td>
</tr>
<tr>
<td>Week 1 Mean difference between groups (CI)</td>
<td>-3.1 (-3.72 to -2.28)</td>
<td>-14.0 (-15.00 to -12.82)</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td><0.001</td>
<td><0.28</td>
<td></td>
</tr>
<tr>
<td>Month 2 Mean difference between groups (CI)</td>
<td>-2.9 (-4.9 to -0.82)</td>
<td>-15.0 (-16.76 to -13.24)</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td><0.011</td>
<td><0.019</td>
<td></td>
</tr>
</tbody>
</table>
Table 9. Relevance Study Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes</th>
<th>Follow-Up</th>
<th>Power</th>
<th>Statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen (2014)</td>
<td>3. Investigator modified duration of the conservative therapy from 6 to 4 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The evidence limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

- Population key: 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.
- Intervention key: 1. Not clearly defined; 2. Version used unclear; 3. Delivery not similar intensity as comparator; 4. Not the intervention of interest.
- Comparator key: 1. Not clearly defined; 2. Not standard or optimal; 3. Delivery not similar intensity as intervention; 4. Not delivered effectively.

Table 10. Study Design and Conduct Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocation</th>
<th>Blinding</th>
<th>Selective Reporting</th>
<th>Follow-Up</th>
<th>Power</th>
<th>Statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen (2014)</td>
<td>1,2. This study was not blinded.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farrokhi (2011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The evidence limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

- Follow-Up key: 1. High loss to follow-up or missing data; 2. Inadequate handling of missing data; 3. High number of crossovers; 4. Inadequate handling of crossovers; 5. Inappropriate exclusions; 6. Not intent to treat analysis (per protocol for noninferiority trials).
- Power key: 1. Power calculations not reported; 2. Power not calculated for primary outcome; 3. Power not based on clinically important difference.
- Statistical key: 1. Intervention is not appropriate for outcome type: (a) continuous; (b) binary; (c) time to event; 2. Intervention is not appropriate for multiple observations per patient; 3. Confidence intervals and/or p values not reported; 4. Comparative treatment effects not calculated.

Nonrandomized Comparative Studies

Edidin et al (2011, 2015) reported on mortality risk rates in Medicare patients who had vertebral compression fractures and were treated with vertebroplasty, kyphoplasty, or nonoperatively. These studies were industry-funded. In the 2015 report, they identified 1038956 patients who had vertebral compression fractures between 2005 and 2009. The dataset included 141343 kyphoplasty patients and 75364 vertebroplasty patients. The matched cohort included 100649 nonoperated patients, 36657 kyphoplasty patients, and 24313 vertebroplasty patients. Survival was calculated from the index diagnosis date until death or the end of follow-up (up to four years). Analysis of the whole data set before matching indicated that patients in the nonoperated cohort
had a 55% (95% CI, 53% to 56%, p<0.001) higher risk of mortality than the kyphoplasty cohort and a 25% (95% CI, 23% to 26%, p<0.001) higher mortality risk than the vertebroplasty cohort. After propensity matching, the risk of mortality at 4 years was 47.2% in the nonoperated group compared with 42.3% in the kyphoplasty group (p<0.001) and 46.2% in the vertebroplasty group (p<0.001).

Lin et al (2017) reported on mortality risk in elderly patients (>70 years old) who had vertebral compression fractures and were treated with early vertebroplasty (within 3 months) or conservative therapy.31 The data set consisted of 10785 Taiwanese patients who were selected through the National Health Insurance Research Database, of whom 1773 patients received vertebroplasty, and 5324 did not; a minority of these patients had osteoarthritis. The authors found that a "significant difference in survival curves of mortality and respiratory failure" existed between both groups of patients (p<0.05). The incidence of death at 1 year in the vertebroplasty group was 0.46 per 100 person-months (95% CI, 0.38 to 0.56). The incidence of death at 1 year in the nonvertebroplasty group was 0.63 per 100 person-months (95% CI, 0.57 to 0.70). With regard to respiratory failure, hazard ratio between groups was 1.46 (95% CI, 1.04 to 2.05; p=0.028). Limitations of this study included the broad selection of the population, which was not restricted only to patients with osteoporotic lesions. Also, authors were limited by the database, which did not report on pain or functional outcomes.

Section Summary: Percutaneous Vertebroplasty for Vertebral Compression Fractures of Between Six Weeks and One Year Old
Despite evidence from numerous RCTs, including two with sham controls, the efficacy of vertebroplasty for painful osteoporotic compression fractures of less than one year remains uncertain. Four meta-analysis studies are present, including an update, 3 of which include the 2 randomized, sham-controlled trials from 2009 but have mixed results. There remains some uncertainty related to the interpretation of these conclusions. While the use of a sham procedure is a major methodologic strength to control for nonspecific (placebo) effects, the sham used is controversial, given that the effect of injecting local anesthetic in the facet capsule and/or periosteum is unknown. Also, the appropriateness of outcome measures used to detect clinically meaningful differences in pain might not have been optimal, because the studies were underpowered to detect differences in clinical response rates. Questions have also been raised about the low percentage of patients screened who participated in the trial, the volume of polymethylmethacrylate (PMMA) injected, and the inclusion of patients with chronic pain.

Percutaneous Vertebroplasty for Vertebral Compression Fractures of Less Than Six Weeks old
Clinical Context and Therapy Purpose
The purpose of vertebroplasty is to provide a treatment option that is an alternative to or an improvement on existing therapies, such as conservative management, in patients with symptomatic osteoporotic vertebral fractures less than six weeks old.

The question addressed in this evidence review is: does vertebroplasty improve the net health outcome in individuals with symptomatic osteolytic vertebral fractures less than six weeks old?

The following PICOTS were used to select literature to inform this review.
Patients
The relevant population of interest are individuals with symptomatic osteoporotic vertebral fractures less than six weeks old. With acute fractures, these individuals experience severe pain, decreased ambulatory function, and a lessened response to conservative medical management.

Interventions
The therapy being considered is vertebroplasty, which is typically performed by an interventional radiologist in an outpatient clinical setting.

Comparators
Comparators of interest include conservative management. A detailed review of the comparators is listed in the above indication. Patients receiving conservative management are typically managed by physical therapists and primary care providers in an outpatient clinical setting.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, QOL, hospitalizations, medication use, and treatment-related morbidity. Symptoms can include back pain and demonstrated fracture on radiography. The most current research available tracks follow-up to twelve months or more. A number of studies have longer term follow-up at more than five years, which is ideal for understanding all of the outcomes, particularly the occurrence of new vertebral compression fractures after vertebroplasty.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:
 a. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
 b. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
 c. To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
 d. Studies with duplicative or overlapping populations were excluded.

Randomized Controlled Trials
Vertebroplasty vs Medical Management with Sham Controls
Clark et al (2016) reported on results from the Safety and Efficacy of Vertebroplasty of Acute Painful Osteoporotic Fractures (VAPOUR) trial (see Table 11). VAPOUR was a multicenter, double-blind trial of vertebroplasty in 120 patients with vertebral fractures of less than 6 weeks in duration and back pain of at least 7 out of 10 on a numeric rating scale. This trial followed a similar protocol as that used in the Kallmes et al (2009) trial (discussed above). The primary outcome (the percentage of patients with a numeric rating scale score <4 out of 10 at 14 days postprocedure) was met in a greater percentage of patients in the vertebroplasty group (44%) than in the sham control group (21%). This between-group difference was maintained through six months.

Other outcome measures were significantly improved in the vertebroplasty group at one or both of the time points (see Table 11). The benefit of vertebroplasty was found predominantly in the thoracolumbar subgroup, with 48% (95% CI, 27% to 68%) more patients meeting the primary endpoint (61% in the vertebroplasty group vs 13% in the control group). The investigators commented that the thoracolumbar junction is subject to increased dynamic load, and fractures at
this junction have the highest incidence of mobility. No benefit from vertebroplasty was found in the nonthoracolumbar subgroup. Postprocedural hospital stay was reduced from a mean of 14 days in the control group to 8.5 days after vertebroplasty, even though physicians who determined the discharge date remained blinded to treatment. In the vertebroplasty group, there were two serious adverse events due to sedation and transfer to the radiology table. In the control group, two patients developed spinal cord compression; one underwent decompressive surgery and the other, not a surgical candidate, became paraplegic.

Vertebroplasty vs Medical Management Without Sham Controls
Klazenen al (2010) reported on the Vertebroplasty versus Conservative Treatment in Acute Osteoporotic Vertebral Compression Fractures, an open-label randomized trial of 202 patients at 6 hospitals in the Netherlands and Belgium. Of 431 patients eligible for randomization, 229 (53%) had spontaneous pain relief during assessment. Participants with at least one painful osteoporotic vertebral fracture of six weeks or less in duration were assigned to vertebroplasty or conservative management. The primary outcome was pain relief of three points measured on a 10-point VAS at one month and one year.

A total of 101 subjects were enrolled in the treatment group and the control arm; 81% completed 12-month follow-up. There were no significant differences in the primary outcome (pain relief of three points) measured at one month and one year. Vertebroplasty resulted in greater pain relief than medical management through 12 months (<0.001); there were significant between-group differences in mean VAS scores at 1 month or at 1 year. Survival analysis showed significant pain relief was quicker (29.7 days vs 115.6 days) and was achieved by more patients after vertebroplasty than after conservative management.

Yi et al (2014) assessed the occurrence of new vertebral compression fractures after treatment with cement augmenting procedures (vertebroplasty or kyphoplasty) vs conservative treatment in an RCT with 290 patients (363 affected vertebrae). Patients treated conservatively had a mean length of stay of 13.7 days. Return to usual activity occurred at 1 week for 87.6% of operatively treated patients and 2 months for 59.2% of conservatively treated patients. All patients were evaluated with radiographs and magnetic resonance imaging at six months and then at yearly intervals until the last follow-up session. At a mean follow-up of 49.4 months (range, 36-80 months), 10.7% of patients had experienced 42 new symptomatic vertebral compression fractures. There was no significant difference in the incidence of new vertebral fractures between the operative (18 total; 9 adjacent, 9 nonadjacent) and conservative (24 total; 5 adjacent, 16 nonadjacent, 3 same level) groups but the mean time to a new fracture was significantly shorter in the operative group (9.7 months) than in the nonoperative group (22.4 months).

Leali et al (2016) published a brief report on a multicenter RCT enrolling 400 patients with osteoporotic thoracic or lumbar vertebral compression fractures who were treated with vertebroplasty or conservative therapy. Fractures were treated within two weeks of pain onset. Details of randomization and rates of follow-up were not reported. At 1 day after treatment, the vertebroplasty group had a reduction in pain scores and improvement in physical function, with VAS pain scores decreasing from 4.8 (maximum, 5.0) to 2.3 (p=0.023) and ODI scores improving from 53.6% to 31.7% (p=0.012). Sixty-five percent of patients treated with vertebroplasty had stopped all analgesic use within 48 hours. The conservatively managed group showed no benefit in the first 48 hours but by 6 weeks VAS and ODI scores were described as similar in both groups (specific data not reported). Evaluation of this trial was limited by incomplete reporting.
Yang et al (2016) compared vertebroplasty with conservative therapy in 135 patients over 70 years of age with severe back pain due to an osteoporotic vertebral fracture after minor or mild trauma.36 Vertebroplasty was performed at a mean of 8.4 days after pain onset. Patients in the conservative therapy group were placed on bed rest and analgesics for at least two weeks after diagnosis, followed by bracing and assistive devices. All patients receiving vertebroplasty could stand and walk with a brace at 1 day posttreatment, while only 12 (23.5%) patients in the control group could stand up and walk after 2 weeks of bed rest. The average duration of bed rest from pain onset was 7.8 days (range, 2-15 days) in the vertebroplasty group compared with 32.5 days (range, 14-60 days) in the conservative therapy group. At 1-year follow-up, there was a similar percentage of additional compression fractures but a significantly higher complication rate in the conservative therapy group (35.3%) than in the vertebroplasty group (16.1%; p<0.001). Complications included pneumonia, urinary tract infection, deep vein thrombosis, depression, and sleep disorders.

Table 11. Summary of Key RCT Characteristics Involving Vertebroplasty vs Medical Management Without Sham Controls

<table>
<thead>
<tr>
<th>Study; Trial</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants (N)</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klazen (2010)33</td>
<td>EU</td>
<td>6</td>
<td>2005-2008</td>
<td>Patients >50 years with radiographically confirmed VCF, backpain <6 weeks, VAS >5</td>
<td>Vertebroplasty (101)</td>
</tr>
<tr>
<td>Yi (2014)34</td>
<td>China</td>
<td>1</td>
<td>2005-2009</td>
<td>Patients with OCVF</td>
<td>PVP or PKP (169)</td>
</tr>
<tr>
<td>Leali (2010)35</td>
<td>International</td>
<td>4</td>
<td>NR</td>
<td>Post-menopausal women with 1 thoracic or lumbar symptomatic OVCF caused by primary or secondary osteoporosis.</td>
<td>PVP including analgesic and osteoporosis medication (200)</td>
</tr>
<tr>
<td>Yang (2015)36</td>
<td>China</td>
<td>1</td>
<td>2009-2011</td>
<td>Patients > 70 years with acute OVCF, severe pain from minor or mild trauma</td>
<td>PVP (56 at one year)</td>
</tr>
</tbody>
</table>

NR: not reported; OVC: osteoporotic vertebral compression fractures; PKP: percutaneous kyphoplasty; PVP: percutaneous vertebroplasty; RCT: randomized controlled trial; VCF: vertebral compression fracture; VAS: visual analog scale.

Table 12. Summary of Key RCT Results Involving Vertebroplasty vs Medical Management Without Sham Controls

<table>
<thead>
<tr>
<th>Study; Trial</th>
<th>VAS</th>
<th>Quality of Life</th>
<th>Refracture Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klazen (2010)33</td>
<td></td>
<td>RMDQ1</td>
<td>Median follow-up of 12.0 months (range: 1-24)</td>
</tr>
<tr>
<td>Mean difference between groups in reduction of mean VAS score from baseline</td>
<td>2.0 (1.13-2.80)</td>
<td>PVP: 12.5</td>
<td>PVP: 18 (16.48%)</td>
</tr>
<tr>
<td>p-value</td>
<td>< 0.0001</td>
<td>Control: 13.5</td>
<td>Control: 30 (24.71%)</td>
</tr>
<tr>
<td>Month 1 (CI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yi (2014)34</td>
<td></td>
<td></td>
<td>PVP/PKP: 18 (8.28%)</td>
</tr>
<tr>
<td>Month 12 (%)</td>
<td></td>
<td></td>
<td>Control: 24 (19.83%)</td>
</tr>
<tr>
<td>Study</td>
<td>VAS</td>
<td>Quality of Life</td>
<td>Refracture Rate</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Intervention</td>
<td>-</td>
<td>-</td>
<td>Time interval of recompression</td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td>-</td>
<td>9.7 ± 17.8 months</td>
</tr>
<tr>
<td>p-value</td>
<td>-</td>
<td>ODI, %</td>
<td>0.017</td>
</tr>
<tr>
<td>Leali (2016)</td>
<td>2.3 ± 1</td>
<td>31.7</td>
<td>-</td>
</tr>
<tr>
<td>Intervention 24 hours after surgery, mean</td>
<td>≤0.023</td>
<td>≤0.012</td>
<td></td>
</tr>
<tr>
<td>Yang (2015)</td>
<td>PVP: 2.4±1</td>
<td>PVP: 48±10</td>
<td></td>
</tr>
<tr>
<td>Analysis of variance models, Month 1 (SD)</td>
<td>Control: 4.8±1</td>
<td>Control: 71±7</td>
<td></td>
</tr>
<tr>
<td>Analysis of variance models, Month 12 (SD)</td>
<td>PVP: 1.8±0.3</td>
<td>PVP: 30±5</td>
<td>PVP: 5 (8.9%) Control: 4 (7.8)</td>
</tr>
<tr>
<td>p-value</td>
<td>≤0.5</td>
<td>-</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

CI: 95% confidence interval; ODI: Oswestry Disability Index; PKP: percutaneous kyphoplasty; PVP: percutaneous vertebroplasty; RCT: randomized controlled trials; RMDQ: Roland-Morris Disability Questionnaire; VAS: visual analogue scale; SD: standard deviation.

1The RMDQ results from the Klazen paper are based on estimates due to the graphical presentation of the results, rather than the reporting of the numerical values.
2The results from the Yang paper are based on estimates due to the graphical presentation of the results; numerical results not reported.

Table 13. Relevance Study Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klazen (2010)</td>
<td>3. None reported</td>
<td>1,2. No masking.</td>
<td>3. None reported</td>
<td>1,2 Follow-up period limited to < 6 months</td>
<td></td>
</tr>
<tr>
<td>Yi (2014)</td>
<td>4. Selection criteria for PVP or PKP unclear, some patients had > fracture</td>
<td>4. Study population limited to > 70 years of age at single spine center</td>
<td>1,2 Follow-up period limited to < 6 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leali (2010)</td>
<td>1. Limited to post-menopausal women</td>
<td>4. Not clearly defined; 2. Version used unclear; 3. Delivery not similar intensity as comparator; 4. Not the intervention of interest</td>
<td>1,2 Follow-up period limited to < 6 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang (2015)</td>
<td>4. Study population limited to > 70 years of age at single spine center</td>
<td>4. Not clearly defined; 2. Not standard or optimal; 3. Delivery not similar intensity as intervention; 4. Not delivered effectively</td>
<td>1,2 Follow-up period limited to < 6 months</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PVP: percutaneous vertebroplasty; PKP: percutaneous kyphoplasty.
The evidence limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

Table 14. Study Design and Conduct Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocation</th>
<th>Blinding</th>
<th>Selective Reporting</th>
<th>Follow-Up</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klazen (2010)</td>
<td>1,2. No masking.</td>
<td></td>
<td></td>
<td>3. Follow-Up</td>
<td></td>
</tr>
<tr>
<td>Yi (2014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Allocation</td>
<td>Blinding</td>
<td>Selective Reporting</td>
<td>Follow-Up</td>
<td>Power</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>--------------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Leali (2010)(^{35})</td>
<td>1,2,3, unclear if masking occurred</td>
<td>2. Outcomes beyond 48 hours post-surgery not reported.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang (2015)(^{36})</td>
<td>1,2,3 No masking</td>
<td></td>
<td>3. Results reported only in graphic form</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The evidence limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

\(^{b}\) Blinding key: 1. Not blinded to treatment assignment; 2. Not blinded outcome assessment; 3. Outcome assessed by treating physician.

\(^{c}\) Selective Reporting key: 1. Not registered; 2. Evidence of selective reporting; 3. Evidence of selective publication.

\(^{d}\) Follow-Up key: 1. High loss to follow-up or missing data; 2. Inadequate handling of missing data; 3. High number of crossovers; 4. Inadequate handling of crossovers; 5. Inappropriate exclusions; 6. Not intent to treat analysis (per protocol for noninferiority trials).

\(^{e}\) Power key: 1. Power calculations not reported; 2. Power not calculated for primary outcome; 3. Power not based on clinically important difference.

\(^{f}\) Statistical key: 1. Intervention is not appropriate for outcome type: (a) continuous; (b) binary; (c) time to event; 2. Intervention is not appropriate for multiple observations per patient; 3. Confidence intervals and/or p values not reported; 4. Comparative treatment effects not calculated.

Section Summary: Percutaneous Vertebroplasty for Vertebral Compression Fractures of Less Than 6 Weeks Old

In a sham-controlled randomized trial, where no anesthetic was injected into the periosteum, there was a significant benefit of vertebroplasty in patients who had severe pain of fewer than six weeks in duration following vertebral fracture at the thoracolumbar junction. Other RCTs without sham controls have reported that vertebroplasty is associated with significant improvements in pain, earlier improvements in function, and reductions in the duration of bed rest compared with conservatively managed patients.

Percutaneous Sacroplasty

Clinical Context and Therapy Purpose

The purpose of sacroplasty is to provide a treatment option that is an alternative to or an improvement on existing therapies, such as conservative management, in patients with sacral insufficiency fractures.

The question addressed in this evidence review is: does sacroplasty improve the net health outcome in individuals with sacral insufficiency fractures?

The following PICOTS were used to select literature to inform this review.

Patients

The relevant population of interest are individuals with sacral insufficiency fractures. Sacral insufficiency fractures are a stress fracture, resulting from a regular stress applied to a bone with reduced elasticity. Often, these fractures are associated with underlying metabolic bone disease condition like osteoporosis. Examples of risk factors include corticosteroid therapy use, female sex, pelvic radiation, rheumatoid arthritis, and hyperparathyroidism.

Interventions

The therapy being considered is sacroplasty, a minimally invasive procedure for treating pathological fractures of the sacral vertebral body or sacral ala. The procedure involves percutaneous insertion of one or more bone needles into the sacrum and injection of bone cement under fluoroscopy and/or computed tomography visual guidance. This intervention is provided by an interventional radiologist typically in an outpatient setting.
Comparators
Comparators of interest include conservative management. Conservative management includes physical therapy, analgesics, narcotics, and hormone treatments. Examples of conservative management for sacral insufficiency fractures are varied and can include bed rest and pain medication to early physical therapy.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, QOL, hospitalizations, medication use, and treatment-related morbidity. Possible negative outcomes include complications with sedation, cement leakage into the presacral space, spinal canal, sacral foramen, or sacroiliac joint, and possible spinal compression due to extravasation of cement. At least one year of follow-up is desirable to adequately evaluate outcomes.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:

a. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
b. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
c. To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
d. Studies with duplicative or overlapping populations were excluded.

Sacroplasty is an evolving technique achieved using numerous methods (short-axis, long-axis, balloon-assisted short-axis, iliosacral screws). No randomized trials of sacroplasty were identified. The largest prospective report is an observational cohort study by Frey et al (2008) who assessed 52 consecutive patients undergoing sacroplasty for sacral insufficiency fractures using the short-axis technique.37 Patients had a mean age of 75.9 years, mean duration of symptoms of 34.5 days (range, 4-89 days), and mean VAS score of 8.1 at baseline. Improvements in VAS scores were measured at 30 minutes and 2, 4, 12, 24, and 52 weeks postprocedure. At each interval, statistically significant improvements over baseline were observed and maintained through 52 weeks.

The largest series identified is a retrospective multicenter analysis by Kortman et al (2013) who evaluated 204 patients with painful sacral insufficiency fractures and 39 patients with symptomatic sacral lesions treated with the short-axis or long-axis technique.38 One hundred sixty-nine patients had bilateral sacral insufficiency fractures, and 65 patients had additional fractures of the axial skeleton. VAS scores improved from 9.2 before treatment to 1.9 after treatment in patients with sacral insufficiency fractures and from 9.0 to 2.6 in patients with sacral lesions. There was one case of radicular pain due to extravasation of cement requiring surgical decompression.

Frey et al (2017) reported on patients treated with percutaneous sacroplasty, particularly the long-term efficacy of sacroplasty vs nonsurgical management.39 This prospective, observational cohort study spanned 10 years and comprised 240 patients with sacral insufficiency fractures. Thirty-four patients were treated with nonsurgical methods, and 210 patients were treated with sacroplasty. Pain, as measured by VAS, was recorded before treatment and at several follow-ups. Mean pretreatment VAS for the sacroplasty group was 8.29; for the nonsurgical treatment group, it was 7.47. Both forms of treatment resulted in significant VAS improvement from pretreatment to the 2-
year follow-up \((p<0.001)\). However, the sacroplasty treatment group experienced significant VAS score improvement consistently at many of the follow-up points (pretreatment to post \([p<0.001]\); posttreatment through 2 weeks \([p>0.001]\); 12 weeks through 24 weeks \([p=0.014]\); 24 weeks through 1 year \([p=0.002]\)). Meanwhile, the group with nonsurgical treatment only experienced one significant pain improvement score—at the 2-week follow-up posttreatment \((p=0.002)\). One major limitation of this study was that the nonsurgical treatment group was not followed up at the ten-year mark whereas the sacroplasty group did receive follow-up.

There are several retrospective reviews with roughly 50 patients per publication. One reported by Dougherty et al (2014) described a series of 57 patients treated with sacroplasty for sacral insufficiency fractures.\(^{40}\) The short- or the long-axis approach was dictated by the length and type of the fracture and patient anatomy. Follow-up data at 2.5 weeks were available for 45 (79\%) patients, and the outcome measures were inconsistent. For example, activity pain scores were collected from 13 patients, and rest pain scores were collected from 29 patients. Of the 45 patients with outcomes data, 37 (82\%) had experienced a numeric or descriptive decrease from initial pain of at least 30\%.

Adverse Events

There are complications related to cement leakage with sacroplasty that are not observed with vertebroplasty. Leakage of PMMA into the presacral space, spinal canal, sacral foramen, or sacroiliac joint may result in pelvic injection of PMMA, sacral nerve root or sacral spinal canal compromise, or sacroiliac joint dysfunction.\(^{41}\) Performing sacroplasty only on zone one fractures can minimize these risks.\(^{42}\)

Section Summary: Percutaneous Sacroplasty

No RCTs evaluating percutaneous sacroplasty for sacral insufficiency were identified. The available evidence includes two prospective cohort studies and several retrospective series. These studies have reported rapid and sustained decreases in pain following percutaneous sacroplasty. Additional reports are mostly consistent in reporting immediate improvement following the procedure. Due to the limited number of patients and the retrospective nature of the evidence base, harms associated with sacroplasty have not been adequately studied. The small numbers of treated patients leave uncertainty regarding the impact of sacroplasty on health outcomes.

SUMMARY OF EVIDENCE

For individuals who have symptomatic osteoporotic vertebral fractures of between six weeks and one year old who receive vertebroplasty, the evidence includes two randomized sham-controlled trials, nonblinded RCTs comparing vertebroplasty with conservative management, and systematic reviews of these RCTs. The relevant outcomes are symptoms, functional outcomes, QOL, hospitalizations, medication use, and treatment-related morbidity. Despite the completion of numerous RCTs, including two with sham controls, the efficacy of vertebroplasty for painful osteoporotic compression fractures remains uncertain. Two meta-analysis studies which included the two sham-controlled trials have demonstrated mixed results. The two studies had methodologic issues, including the choice of sham procedure and the potential of the sham procedure to have a therapeutic effect by reducing pain. Questions have also been raised about the low percentage of patients screened who participated in the trial, the volume of PMMA injected, and the inclusion of patients with chronic pain. Overall, conclusions about the effect of vertebroplasty remain unclear. The evidence is insufficient to determine the effects of the technology on health outcomes.
For individuals with symptomatic osteoporotic vertebral fractures less than six weeks old who receive vertebroplasty, the evidence includes a randomized sham-controlled trial and other nonblinded RCTs comparing vertebroplasty with conservative management. The relevant outcomes are symptoms, functional outcomes, QOL, hospitalizations, medication use, and treatment-related morbidity. For acute fractures, conservative therapy consisting of rest, analgesics, and physical therapy is an option, and symptoms will resolve in a large percentage of patients with conservative treatment only. However, a sham-controlled randomized trial in patients who had severe pain of fewer than six weeks in duration found a significant benefit of vertebroplasty for the treatment of osteoporotic vertebral fracture at the thoracolumbar junction. Other RCTs without sham controls have reported that vertebroplasty is associated with significant improvements in pain and reductions in the duration of bed rest. Given the high morbidity associated with extended bed rest in older adults, this procedure is considered to have a significant health benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals with sacral insufficiency fractures who receive sacroplasty, the evidence includes two prospective cohort studies, several retrospective reviews, and a case series. The relevant outcomes are symptoms, functional outcomes, QOL, hospitalizations, medication use, and treatment-related morbidity. No RCTs have been reported. The available evidence includes a prospective cohort study and a retrospective series of 243 patients. These studies have reported rapid and sustained decreases in pain following percutaneous sacroplasty. Additional literature has mostly reported immediate improvements following the procedure. However, due to the limited size of the evidence base, the harms associated with sacroplasty have not been adequately studied. The evidence is insufficient to determine the effects of the technology on health outcomes.

CLINICAL INPUT RECEIVED FROM PHYSICIAN SPECIALTY SOCIETIES AND ACADEMIC MEDICAL CENTERS

While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

2014 Input
In response to requests, input was received from 2 physician specialty societies and 3 academic medical centers while this policy was under review in 2014. Focused input was sought on the treatment of acute vertebral fractures when there is severe pain that has led to hospitalization or persists at a level that prevents ambulation, and on the treatment of traumatic fractures that have remained symptomatic after 6 weeks of conservative treatment. Clinical input on these issues was mixed.

2008 Input
In response to requests, input was received from 5 physician specialty societies and 2 academic medical centers while this policy was under review in 2008. Unsolicited input was received from a sixth physician specialty society. All reviewers disagreed with the proposed policy and provided references in support of the use of vertebroplasty.
PRACTICE GUIDELINES AND POSITION STATEMENTS

American College of Radiology

The American College of Radiology (2018) revised its ACR Appropriateness Criteria for the use of percutaneous vertebral augmentation in the management of vertebral compression fractures. Table 15 shows the appropriateness categories for each variant.

Table 15. ACR Appropriateness Criteria for the use of Percutaneous Vertebral Augmentation for the Management of Vertebral Compression Fractures

<table>
<thead>
<tr>
<th>Variants</th>
<th>Appropriateness Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>"New symptomatic compression fracture identified on radiographs or CT. No known malignancy."</td>
<td>May Be Appropriate</td>
</tr>
<tr>
<td>"Osteoporotic compression fracture, with or without edema on MRI and no 'red flags.' With or without spinal deformity, worsening symptoms, or pulmonary dysfunction."</td>
<td>Usually Appropriate</td>
</tr>
<tr>
<td>"Asymptomatic pathologic spinal fracture with or without edema on MRI."</td>
<td>May Be Appropriate</td>
</tr>
<tr>
<td>"Pathologic spinal fracture with severe and worsening pain."</td>
<td>Usually Appropriate</td>
</tr>
<tr>
<td>"Pathologic spinal fracture with spinal deformity or pulmonary dysfunction."</td>
<td>Usually Appropriate</td>
</tr>
</tbody>
</table>

CT: computed tomography; MRI: magnetic resonance imaging; ACR: American College of Radiology.

American College of Radiology et al

The American College of Radiology (2014) and 4 other medical specialty associations updated a 2012 joint position statement on percutaneous vertebral augmentation. The statement indicated that percutaneous vertebral augmentation with the use of vertebroplasty or kyphoplasty is a safe, efficacious, and durable procedure in appropriate patients with symptomatic osteoporotic and neoplastic fractures, when performed in accordance with public standards. The document also stated that these procedures are offered only when nonoperative medical therapy has not provided adequate pain relief, or pain is significantly altering patients' quality of life.

Society for Interventional Radiology

The Society of Interventional Radiology (2014) issued a joint position statement with 7 other societies on percutaneous vertebral augmentation noting that "percutaneous vertebral augmentation (PVA) with the use of vertebroplasty and kyphoplasty is a safe, efficacious, and durable procedure in appropriate patients with symptomatic osteoporotic and neoplastic fractures, when performed in a manner in accordance with published standards." The society states that percutaneous vertebral augmentation should be "offered only when nonoperative medical therapy has not provided adequate pain relief or pain is significantly altering the patient's quality of life." Finally, the society notes that "the benefits of PVA outweigh its risk and the risks of non-operative medical therapy, and the success rate in appropriately selected patients is consistently high."

In a quality improvement guideline from the Society for Interventional Radiology (2014), failure of medical therapy was defined as follows:

1. "For a patient rendered nonambulatory as a result of pain from a weakened or fractured vertebral body, pain persisting at a level that prevents ambulation despite 24 hours of analgesic therapy;"
2. "For a patient with sufficient pain from a weakened or fractured vertebral body that physical therapy is intolerable, pain persisting at that level despite 24 hours of analgesic therapy; or"
3. "For any patient with a weakened or fractured vertebral body, unacceptable side effects such as excessive sedation, confusion, or constipation as a result of the analgesic therapy necessary to reduce pain to a tolerable level."
American Academy of Orthopaedic Surgeons
The AAOS(2010) approved practice guidelines on the treatment of osteoporotic spinal compression fractures.46 The AAOS approved a strong recommendation against the use of vertebroplasty for patients who "present with an osteoporotic spinal compression fracture on imaging with correlating clinical signs and symptoms and who are neurologically intact." With this recommendation, the AAOS expressed its confidence that future evidence is unlikely to overturn the existing evidence.

National Institute for Health and Care Excellence
The NICE(2003) concluded in its guidance on percutaneous vertebroplasty that the current evidence on the safety and efficacy of vertebroplasty for vertebral compression fractures appeared "adequate to support the use of this procedure" to "provide pain relief for people with severe painful osteoporosis with loss of height and/or compression fractures of the vertebral body..."47 The guidance also recommended that the procedure be limited to patients whose pain is refractory to more conservative treatment. A NICE (2013) guidance indicated that percutaneous vertebroplasty and percutaneous balloon kyphoplasty "are recommended as options for treating osteoporotic vertebral compression fractures" in persons having "severe, ongoing pain after a recent, unhealed vertebral fracture despite optimal pain management" and whose "pain has been confirmed to be at the level of the fracture by physical examination and imaging."48

The NICE (2008) issued guidance on the diagnosis and management of adults with metastatic spinal cord compression.49 This guidance indicated that vertebroplasty or kyphoplasty should be considered for "patients who have vertebral metastases and no evidence of MSCC [metastatic spinal cord compression] or spinal instability if they have: mechanical pain resistant to conventional pain management, or vertebral body collapse."

U.S. PREVENTIVE SERVICES TASK FORCE RECOMMENDATIONS
Not applicable.

ONGOING AND UNPUBLISHED CLINICAL TRIALS
Ongoing trials that might influence this policy are listed in Table 16.

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td>The Comparative Study About the Effect of Vertebral Body Decompression Procedure and Conservative Treatment for Benign Vertebral Compression Fracture - Prospective Randomized Control Study</td>
<td>80</td>
<td>Apr 2018</td>
</tr>
<tr>
<td>NCT02902250</td>
<td>Pilot Study: Does Preventive Adjacent Level Cement Augmentation Positively Affect Reoperation Rates After Osteoporotic Vertebral Compression Fractures?</td>
<td>100</td>
<td>Dec 2018</td>
</tr>
<tr>
<td>NCT02489825</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

CODING
The following codes for treatment and procedures applicable to this policy are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.
CPT/HCPCS

22510 Percutaneous vertebroplasty (bone biopsy included when performed), 1 vertebral body, unilateral or bilateral injection, inclusive of all imaging guidance; cervicothoracic

22511 Percutaneous vertebroplasty (bone biopsy included when performed), 1 vertebral body, unilateral or bilateral injection, inclusive of all imaging guidance; lumbosacral

22512 Percutaneous vertebroplasty (bone biopsy included when performed), 1 vertebral body, unilateral or bilateral injection, inclusive of all imaging guidance; each additional cervicothoracic or lumbosacral vertebral body (List separately in addition to code for primary procedure)

0200T Percutaneous sacral augmentation (sacroplasty), unilateral injection(s), including the use of a balloon or mechanical device, when used, 1 or more needles, includes imaging guidance and bone biopsy, when performed

0201T Percutaneous sacral augmentation (sacroplasty), bilateral injections, including the use of a balloon or mechanical device, when used, 2 or more needles, includes imaging guidance and bone biopsy, when performed

ICD-10 Diagnoses

C41.2 Malignant neoplasm of vertebral column
C79.51 Secondary malignant neoplasm of bone
C79.52 Secondary malignant neoplasm of bone marrow
C90.00 Multiple myeloma not having achieved remission
C90.01 Multiple myeloma in remission
D18.09 Hemangiomia of other sites
D47.Z9 Other specified neoplasms of uncertain behavior of lymphoid, hematopoietic and related tissue
M48.50XA Collapsed vertebra, not elsewhere classified, site unspecified, initial encounter for fracture
M48.51XA Collapsed vertebra, not elsewhere classified, occipito-atlanto-axial region, initial encounter for fracture
M48.52XA Collapsed vertebra, not elsewhere classified, cervical region, initial encounter for fracture
M48.53XA Collapsed vertebra, not elsewhere classified, cervicothoracic region, initial encounter for fracture
M48.54XA Collapsed vertebra, not elsewhere classified, thoracic region, initial encounter for fracture
M48.55XA Collapsed vertebra, not elsewhere classified, thoracolumbar region, initial encounter for fracture
M48.56XA Collapsed vertebra, not elsewhere classified, lumbar region, initial encounter for fracture
M48.57XA Collapsed vertebra, not elsewhere classified, lumbosacral region, initial encounter for fracture
M48.58XA Collapsed vertebra, not elsewhere classified, sacral and sacrococcygeal region, initial encounter for fracture
M80.08XA Age-related osteoporosis with current pathological fracture, vertebra(e), initial encounter for fracture
M80.88XA Other osteoporosis with current pathological fracture, vertebra(e), initial encounter for fracture

Contains Public Information
M81.0 Age-related osteoporosis without current pathological fracture
M81.8 Other osteoporosis without current pathological fracture
M84.48XA Pathological fracture, other site, initial encounter for fracture
M84.58XA Pathological fracture in neoplastic disease, vertebrae, initial encounter for fracture
M84.68XA Pathological fracture in other disease, other site, initial encounter for fracture

REVISIONS

<table>
<thead>
<tr>
<th>Date</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-21-2005</td>
<td>Added “or kyphoplasty” to policy #C.</td>
</tr>
<tr>
<td>12-14-2005</td>
<td>In “Policy” section, #C., added ‘and cervical percutaneous vertebroplasty and kyphoplasty’ based on Radiology Liaison Committee recommendations from 02-12-2002.</td>
</tr>
<tr>
<td></td>
<td>In “Coding” CPT/HCPCS section, added CPT codes 22523, 22524, and 22525, and added “or vertebral augmentation including cavity creation” to CPT code 76012 to reflect changes in CPT book.</td>
</tr>
<tr>
<td></td>
<td>In “Coding” CPT/HCPCS section, deleted HCPCS codes S2360 and S2361 because ‘cervical’ is considered E/I by the Radiology Liaison Committee 02-12-2002.</td>
</tr>
<tr>
<td>12-21-2006</td>
<td>In “Coding”, Covered Diagnosis section, added Percutaneous vertebroplasty or Kyphoplasty – CPT Codes – 22520, 22521, 22522, 22523, 22524, 22525, 76012, 76013, S2362, S2363 to the current listing of diagnosis codes.</td>
</tr>
<tr>
<td>07-27-2006</td>
<td>Deleted S2362 and S2363, the codes were deleted from HCPCS 4-1-06.</td>
</tr>
<tr>
<td>effective 10-01-2006</td>
<td></td>
</tr>
<tr>
<td>10-31-2006</td>
<td>In “Coding”, CPT/HCPCS deleted CPT codes 76012 and 76013 and added CPT codes 72291 and 72292 due to the 2007 CPT changes.</td>
</tr>
<tr>
<td>effective 01-01-2007</td>
<td></td>
</tr>
<tr>
<td>Description section:</td>
<td>Updated description to reflect discussion of percutaneous vertebroplasty, kyphoplasty and sacroplasty</td>
</tr>
<tr>
<td>Policy section:</td>
<td>Revised policy language from:</td>
</tr>
<tr>
<td>C. Percutaneous vertebroplasty or kyphoplasty is considered medically necessary after failure of standard medical therapy in patients when any of the following criteria is met. Medical conditions not listed and cervical percutaneous vertebroplasty and kyphoplasty will be denied experimental/investigational.</td>
<td></td>
</tr>
<tr>
<td>1. Osteolytic vertebral metastasis or myeloma with severe back pain related to destruction of the vertebral body not involving the major part of the cortical bone, and chemotherapy and radiation therapy have failed to relieve symptoms; or</td>
<td></td>
</tr>
<tr>
<td>2. Vertebral hemangiomas with aggressive clinical signs (severe pain or nerve compression) and/or aggressive radiological signs, and radiation therapy has failed to relieve symptoms; or</td>
<td></td>
</tr>
<tr>
<td>3. Osteoporotic vertebral collapse with persistent debilitating pain that has not responded to accepted standard medical therapy as documented in the medical records. Standard medical therapy may include initial bed rest with progressive activity, analgesics, physical therapy, bracing and exercises to correct postural deformity and increase muscle tone, salmon calcitonin, bisphosphonates and calcium supplementation; or</td>
<td></td>
</tr>
<tr>
<td>4. Painful vertebral eosinophilic granuloma with spinal instability.</td>
<td></td>
</tr>
<tr>
<td>To:</td>
<td>Percutaneous vertebroplasty and kyphoplasty may be considered medically necessary for the treatment of:</td>
</tr>
</tbody>
</table>
severe pain due to osteolytic lesions of the spine related to multiple myeloma or metastatic malignancies
vertebral hemangiomas with pain, nerve compression or aggressive radiologic signs, and radiation therapy has failed to relieve symptoms
painful vertebral eosinophilic granuloma
vertebral compression fracture with persistent debilitating pain

Sacroplasty may be considered medically necessary for the treatment of sacral insufficiency fractures that have failed to respond to conservative treatment.

Percutaneous vertebroplasty, kyphoplasty and sacroplasty are considered experimental / investigational for all other indications.

Rationale section:
Added Rationale section.

Coding section:
Added CPT/HCPCS Codes: 0200T, 0201T, S2360, S2361.
Deleted ICD-9 Code: 213.2.
Added ICD-9 Codes: 203.01, 238.6.

01-01-2012 In the Coding section:
Revised CPT nomenclature for the following codes: 22520, 22521, 22522

10-04-2013 Added Medical Policy and Coding Disclaimers.

Description section updated.

In the Policy section:
• Revised medical policy language from the following:
 Percutaneous vertebroplasty and kyphoplasty may be considered medically necessary for the treatment of:
 A. severe pain due to osteolytic lesions of the spine related to multiple myeloma or metastatic malignancies
 B. vertebral hemangiomas with pain, nerve compression or aggressive radiologic signs, and radiation therapy has failed to relieve symptoms
 C. painful vertebral eosinophilic granuloma
 D. osteoporotic vertebral compression fracture with persistent debilitating pain
Sacroplasty may be considered medically necessary for the treatment of sacral insufficiency fractures that have failed to respond to conservative treatment.
Percutaneous vertebroplasty, kyphoplasty and sacroplasty are considered experimental / investigational for all other indications.

Rationale section updated.

In Coding section:
 ▪ Added ICD-10 Diagnosis (Effective October 1, 2014)

Reference section updated.

12-31-2013 In Policy section:
 ▪ In Item I, E, added "/bone scan" to read "The treatment of MRI / bone scan documented acute osteoporotic vertebral..."

01-01-2015 In Coding section:
 ▪ Added CPT Codes: 22510, 22511, 22512, 22513, 22514, 22515 (Effective January 1, 2015)
 ▪ Deleted CPT Codes: 22520, 22521, 22522, 22523, 22524, 22525, 72291, 72292 (Effective January 1, 2015)
 ▪ Revised CPT Codes: 0200T, 0201T (Effective January 1, 2015)

10-21-2015 Policy title changed from "Percutaneous Vertebroplasty, Kyphoplasty and Sacroplasty". A new medical policy was created with information on kyphoplasty titled "Percutaneous Balloon Kyphoplasty and Mechanical Vertebral Augmentation".

Updated Description section.
In Policy section:
- In Item A, removed "or kyphoplasty" to read "Percutaneous vertebroplasty may be considered medically necessary for:"
- In Item B, removed "or kyphoplasty" to read, "Percutaneous vertebroplasty is considered experimental / investigational for all other indications, including use in acute vertebral fractures due to trauma."

Updated Rationale section.

In Coding section:
- Removed CPT codes 22513, 22514, and 22515.

Updated References section.

In Policy section:
- In Item B, removed "or kyphoplasty" as indicated above to read, "Percutaneous vertebroplasty is considered experimental / investigational for all other indications, including in acute vertebral fractures due to trauma." (Not included as intended with previous 10-21-2015 publication.)

01-01-2016 In Coding section:
- Removed HCPCS codes S2360 and S2361.

01-19-2018 Updated Description section.

In Policy section:
- Removed previous Items A 2 and 3, "2. Vertebral hemangiomas with pain, nerve compression or aggressive radiologic signs, and radiation therapy has failed to relieve symptoms; OR 3. Painful vertebral eosinophilic granuloma; OR"
- In previous Item A 4 (now Item A 2), removed "MRI documented acute," "compression," "with persistent debilitating pain," "with graduated activity, back bracing," "and calcitonin," "or these treatments are contraindicated," and added "symptomatic" to read, "The treatment of symptomatic osteoporotic vertebral fractures that have failed to respond to conservative treatment (eg, rest, analgesics, physical therapy) for at least 6 weeks;"
- In previous Item A 5 (now Item A 3), removed "MRI/bone scan documented," "acute," "compression," "with persistent debilitating pain requiring," "admission and parenteral narcotics for treatment" and added "symptomatic," "that are less than 6 weeks in duration that have led to," "or persists at a level that prevents ambulation" to read, "The treatment of symptomatic osteoporotic vertebral fractures that are less than 6 weeks in duration that have led to hospitalization or persists at a level that prevents ambulation."

Updated Rationale section.

In Coding section:
- Removed ICD-9 codes.

Updated References section.

05-23-2018 Updated Description section.

Updated Rationale section.

Updated References section.

08-01-2018 Updated Rationale section.

05-21-2019 Updated Description section.

Updated Rationale section.

Updated References section.

REFERENCES
16. Blue Cross and Blue Shield Technology Evaluation Center (TEC). Percutaneous vertebroplasty or kyphoplasty for vertebral fractures caused by osteoporosis or malignancy. TEC Assessments. 2008;Volume 23:Tab 5.

44. Barr JD, Jensen ME, Hirsch JA, et al. Position statement on percutaneous vertebral augmentation: a consensus statement developed by the Society of Interventional Radiology (SIR), American Association of Neurological Surgeons (AANS) and the Congress of Neurological Surgeons (CNS). American College

Other References
1. Blue Cross and Blue Shield of Kansas National Consultant, Practicing Board Certified Orthopedic Surgeon (241), September 2008.
3. Blue Cross and Blue Shield of Kansas Family Practice Liaison Committee CB, May 2009.
4. Blue Cross and Blue Shield of Kansas Orthopedic Liaison Committee CB, May 2009.
5. Blue Cross and Blue Shield of Kansas Radiology Liaison Committee CB, May 2009.
8. Blue Cross and Blue Shield of Kansas Family Practice Liaison Committee, July 2013.