Title: Percutaneous Left Atrial Appendage Closure Devices for Stroke Prevention in Atrial Fibrillation

Medical Policy

Professional

Original Effective Date: October 11, 2011
Revision Date(s): December 20, 2013; July 1, 2016; July 7, 2016; October 1, 2016; January 1, 2017; July 11, 2017; October 1, 2017; August 8, 2018; October 1, 2018; June 19, 2019
Current Effective Date: August 8, 2018

Institutional

Original Effective Date: October 11, 2011
Revision Date(s): December 20, 2013; July 1, 2016; July 7, 2016; October 1, 2016; January 1, 2017; July 11, 2017; October 1, 2017; August 8, 2018; October 1, 2018; June 19, 2019
Current Effective Date: August 8, 2018

State and Federal mandates and health plan member contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. To verify a member’s benefits, contact Blue Cross and Blue Shield of Kansas Customer Service.

The BCBSKS Medical Policies contained herein are for informational purposes and apply only to members who have health insurance through BCBSKS or who are covered by a self-insured group plan administered by BCBSKS. Medical Policy for FEP members is subject to FEP medical policy which may differ from BCBSKS Medical Policy.

The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents of Blue Cross and Blue Shield of Kansas and are solely responsible for diagnosis, treatment and medical advice.

If your patient is covered under a different Blue Cross and Blue Shield plan, please refer to the Medical Policies of that plan.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals: With atrial fibrillation who are at increased risk for embolic stroke</td>
<td>Interventions of interest are: Watchman percutaneous left atrial appendage closure device</td>
<td>Comparators of interest are: Anticoagulation</td>
<td>Relevant outcomes include: Overall survival, Morbid events, Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals: With atrial fibrillation who are at increased risk for embolic stroke</td>
<td>Interventions of interest are: Percutaneous left atrial appendage closure device other than the Watchman device</td>
<td>Comparators of interest are: Anticoagulation</td>
<td>Relevant outcomes include: Overall survival, Morbid events, Treatment-related morbidity</td>
</tr>
</tbody>
</table>

Contains Public Information
DESCRIPTION
Stroke prevention in atrial fibrillation (AF) is an important goal of treatment. Treatment with anticoagulant medications is the most common approach to stroke prevention. Because most embolic strokes originate from the left atrial appendage, occlusion of the left atrial appendage may offer a nonpharmacologic alternative to anticoagulant medications to lower the risk of stroke. Multiple percutaneously deployed devices are being investigated for left atrial appendage closure (LAAC). One left atrial appendage device (the Watchman device) has approval from the U.S. Food and Drug Administration (FDA) for stroke prevention in patients with AF.

OBJECTIVE
The objective of this policy is to determine whether the use of percutaneous left atrial appendage closure devices improve the net health outcome in individuals with atrial fibrillation who are at increased risk for embolic stroke.

BACKGROUND
Atrial Fibrillation and Stroke
AF is the most common type of irregular heartbeat, affecting at least 2.7 million people in the U.S. Stroke is the most serious complication of AF. The estimated incidence of stroke in non-treated patients with AF is 5% per year. Stroke associated with AF is primarily embolic, tends to be more severe than the typical ischemic stroke, and causes higher rates of mortality and disability. As a result, stroke prevention is a main goal of AF treatment.

Stroke in AF occurs primarily as a result of thromboembolism from the left atrium. The lack of atrial contractions in AF leads to blood stasis in the left atrium, and this low flow state increases the risk for thrombosis. The area of the left atrium with the lowest blood flow in AF, and, therefore, the highest risk of thrombosis, is the left-atrial appendage (LAA). It has been estimated that 90% of left-atrial thrombi occur in the LAA.

Treatment
\textit{Pharmacologic}
The main treatment for stroke prevention in AF is anticoagulation, which has proven efficacy. The risk for stroke among patients with AF is stratified on the basis of several factors. Two commonly used scores, the CHADS$_2$ score and the CHADS$_2$-VASc score are described below in Table 1. Warfarin is the predominant agent in clinical use. A number of newer anticoagulant medications, including dabigatran, rivaroxaban, and apixaban, have recently received U.S. Food and Drug Administration (FDA) approval for stroke prevention in nonvalvular AF and have demonstrated noninferiority to warfarin in clinical trials. While anticoagulation is effective for stroke prevention, there is an increased risk of bleeding. Also, warfarin requires frequent monitoring and adjustments, as well as lifestyle changes. Dabigatran does not require monitoring. However, unlike warfarin, the antithrombotic effects of dabigatran are not reversible with any currently available
hemostatic drugs. Guidelines from the American College of Chest Physicians recommend the use of oral anticoagulation for patients with AF who are at high risk of stroke (ie, CHADS₂ score ≥2), with more individualized choice of antithrombotic therapy in patients with lower stroke risk.¹

Table 1. CHADS₂ and CHADS₂-VASc Scores to Predict Ischemic Stroke Risk in Patients With Atrial Fibrillation

<table>
<thead>
<tr>
<th>Letter</th>
<th>Clinical Characteristics</th>
<th>Points Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Congestive heart failure (signs/symptoms of heart failure confirmed with objective evidence of cardiac dysfunction)</td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>Hypertension (resting blood pressure >140/90 mmHg on at least 2 occasions or current antihypertensive pharmacologic treatment)</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>Age ≥75 y</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>Diabetes (fasting glucose >125 mg/dL or treatment with oral hypoglycemic agent and/or insulin)</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>Stroke or transient ischemic attack (includes any history of cerebral ischemia)</td>
<td>2</td>
</tr>
<tr>
<td>V</td>
<td>Vascular disease (prior myocardial infarction, peripheral arterial disease, or aortic plaque)</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>Age 65-74 y</td>
<td>1</td>
</tr>
<tr>
<td>Sc</td>
<td>Sex category of female (female sex confers higher risk)</td>
<td>1</td>
</tr>
</tbody>
</table>

Adapted from You et al (2012)¹ and January et al (2014).²

Bleeding is the primary risk associated with systemic anticoagulation. Risk scores have been developed to estimate the risk of significant bleeding in patients treated with systemic anticoagulation. An example is the HAS-BLED score, which has validated to assess the annual risk of significant bleeding in patients with AF treated with warfarin.³ The score ranges from 0 to 9, based on a number of clinical characteristics, including the presence of hypertension, renal and liver function, history of stroke, bleeding, labile international normalized ratios (INRs), age, and drug/alcohol use. Scores of 3 or greater are considered to be associated with high risk of bleeding, potentially signaling the need for closer monitoring of the patient for adverse risks, closer monitoring of INRs, or differential dose selections of oral anticoagulants or aspirin.²

Surgery

Surgical removal, or exclusion, of the LAA is often performed in patients with AF who are undergoing open heart surgery for other reasons. Percutaneous LAA closure devices have been developed as a nonpharmacologic alternative to anticoagulation for stroke prevention in AF. The devices may prevent stroke by occluding the LAA, thus preventing thrombus formation.

Several versions of LAA occlusion devices have been developed. The PLAATO system (ev3 Endovascular) was the first device to be approved by the FDA for LAA occlusion. The device was discontinued in 2007 for commercial reasons, and intellectual property was sold to manufacturers of the Watchman system. The Watchman™ left atrial appendage system (Boston Scientific) is a self-expanding nickel titanium device. It has a polyester covering and fixation barbs for attachment to the endocardium.
Implantation is performed percutaneously through a catheter delivery system, using venous access and transseptal puncture to enter the left atrium. Transesophageal echocardiography and fluoroscopy are used to guide the procedure. Following implantation, patients are anticoagulated with warfarin or alternative agents for approximately 1 to 2 months. After this period, patients are maintained on antiplatelet agents (i.e., aspirin and/or clopidogrel) indefinitely. The Amplatzer® cardiac plug (St. Jude Medical), is FDA-approved for closure of atrial septal defects but not LAA closure device. A second-generation device, the Amplatzer Amulet, has been developed for the specific indication of LAAC, but currently does not have the FDA approval. The Amplatzer Amulet consists of a nitinol mesh disc to seal the ostium of the LAA and a nitinol mesh distal lobe, to be positioned within the LAA. The device is preloaded within a delivery sheath. The Percutaneous LAA Transcatheter Occlusion device (eV3) has also been evaluated in research studies but has not received the FDA approval. The Occlutech® (Occlutech, Sweden) Left Atrial Appendage Occluder has received a CE mark for coverage in Europe. The Cardioblate® closure device developed by Medtronic is currently being tested in clinical studies.

The Lariat® Loop Applicator is a suture delivery device approved by the FDA, intended to close a variety of surgical. It is not specifically approved for LAAC. While the Watchman and other devices are implanted in the endocardium, the Lariat is a non-implant epicardial device.

Outcome Measures
The optimal study design for evaluating the efficacy of percutaneous LAAC for the prevention of stroke in AF is a randomized controlled trial that includes clinically relevant measures of health outcomes. The rate of ischemic stroke during follow-up is the primary outcome of interest, along with rates of systemic embolization, cardiac events, bleeding complications, and death. For the LAAC devices, the appropriate comparison group could be oral anticoagulation, no therapy (for patients who have a prohibitive risk for oral anticoagulation), or open surgical repair.

Although the Watchman device and other LAAC devices would ideally represent an alternative to oral anticoagulation for the prevention of stroke in patients with AF, during the postimplantation period, the device may be associated with increased thrombogenicity and, therefore, anticoagulation is used during the periprocedural period. Most studies evaluating the Watchman device have included patients who are eligible for anticoagulation.

REGULATORY STATUS
In 2002, the PLAATO system (ev3 Endovascular) was the first device to be approved by FDA for LAA occlusion. The device was discontinued in 2007 for commercial reasons, and intellectual property was sold to manufacturers of the Watchman system.
In March 2015, the Watchman™ Left Atrial Appendage Closure Technology (Boston Scientific, Marlborough, MA) was approved by the U.S. Food and Drug Administration (FDA) through the premarket approval process on the basis of the Left Atrial Appendage Versus Warfarin Therapy for Prevention of Stroke in Patients with Atrial Fibrillation (PROTECT-AF) randomized controlled trial. This device is indicated to reduce the risk of thromboembolism from the left atrial appendage (LAA) in patients with nonvalvular atrial fibrillation who:

- Are at increased risk for stroke and systemic embolism based on CHADS2 or CHA2DS2-VASc scores and are recommended for anticoagulation therapy;
- Are deemed by their physicians to be suitable for warfarin; and
- Have an appropriate rationale to seek a nonpharmacologic alternative to warfarin, taking into account the safety and effectiveness of the device compared to warfarin.

FDA product code: NGV.

Several other devices are being evaluated for LAA occlusion but are not approved in the United States for percutaneous closure of the LAAC. In 2006, the Lariat® Loop Applicator device (SentreHEART, Redwood City, CA), a suture delivery system, was cleared for marketing by FDA through the 510(k) process. The intended use is to facilitate suture placement and knot tying in surgical applications where soft tissues are being approximated or ligated with a pretied polyester suture. The Amplatzer Amulet® device (St. Jude Medical, Plymouth, MN) has a CE approval in Europe for LAA closure, but is not currently approved in the United States for any indication.
POLICY
A. The use of a device with U.S. Food and Drug Administration (FDA) approval for percutaneous left atrial appendage closure (eg, the Watchman) may be considered medically necessary for the prevention of stroke in patients with nonvalvular atrial fibrillation when the following criteria are met:

1. There is an increased risk of stroke and systemic embolism based on CHADS2 or CHA2DS2-VASc score and systemic anticoagulation therapy is recommended; AND

2. The long-term risks of systemic anticoagulation outweigh the risks of the device implantation (see Policy Guidelines).

B. The use of a device with FDA approval for percutaneous left atrial appendage closure (eg, the Watchman) for stroke prevention in patients who do not meet the above criteria is considered experimental / investigational.

C. The use of other percutaneous left atrial appendage closure devices, including, but not limited, to the Lariat and Amplatzer devices, for stroke prevention in patients with atrial fibrillation is considered experimental / investigational.

Policy Guidelines
1. The balance of risks and benefits associated with implantation of the Watchman device for stroke prevention, as an alternative to systemic anticoagulation, must be made on an individual basis.

2. Bleeding is the primary risk associated with systemic anticoagulation. A number of risk scores have been developed to estimate the risk of significant bleeding in patients treated with systemic anticoagulation. An example is the HAS-BLED score, which has validated to assess the annual risk of significant bleeding in patients with AF treated with warfarin (Pisters et al, 2010). The score ranges from 0 to 9, based on a number of clinical characteristics (see Table PG1).

Table PG1: Clinical Components of the HAS-BLED Bleeding Risk Score

<table>
<thead>
<tr>
<th>Letter</th>
<th>Clinical Characteristic</th>
<th>Points Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Hypertension</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>Abnormal renal and liver function (1 point each)</td>
<td>1 or 2</td>
</tr>
<tr>
<td>S</td>
<td>Stroke</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>Bleeding</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>Labile INRs</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>Elderly (>65)</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>Drugs or alcohol (1 point each)</td>
<td>1 or 2</td>
</tr>
</tbody>
</table>

INR: international normalized ratio.

3. Patients with scores of 3, 4, and 5 have been reported to have a risk of major bleeding of 3.74/100 patient years, 8.70/100 patient years, and 12.5/100 patient years, respectively. Scores of 3 or greater are considered to be associated with high risk of bleeding, potentially signaling the need for closer monitoring of the
patient for adverse risks, closer monitoring of international normalized ratio, or differential dose selections of oral anticoagulants or aspirin (January et al, 2014).

RATIONALE

The most recent literature review was conducted through March 25, 2019.

Evidence reviews assess the clinical evidence to determine whether the use of a technology improves the net health outcome. Broadly defined, health outcomes are length of life, quality of life, and ability to function—including benefits and harms. Every clinical condition has specific outcomes that are important to patients and to managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of a technology, 2 domains are examined: the relevance and the quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

The evidence on the efficacy of left atrial appendage closure (LAAC) devices consists of numerous case series of various occlusion devices, and 2 published RCTs of the Watchman device, the PROTECT AF and PREVAIL trials, that have compared LAAC with warfarin anticoagulation. Evidence on each device will be reviewed separately because the devices are not similar in design, and each may have its unique considerations.

Watchman Device

Clinical Context and Therapy Purpose

The purpose of the Watchman device in patients who have atrial fibrillation (AF) and are at increased risk for embolic stroke is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Does the use of the Watchman device improve net health outcomes compared with systemic anticoagulation treatment in patients with AF who are at increased risk for embolic stroke?

The following PICOTS were used to select literature to inform this review.
Patients
The relevant population of interest are patients with AF. AF causes a low flow state in the left atrium which increases the risk of thromboembolism. Strokes in patients with AF occur primarily due to thromboembolism from the left atrium. Patients with AF who are not treated have a 5% estimated incidence of stroke.

Interventions
The therapy being considered is use of the Watchman percutaneous left atrial appendage (LAA) closure device. The device is made of nickel titanium and is implanted percutaneously through a catheter, into the left atrium. The Watchman comes in five sizes and self-expands to occlude the LAA. By occluding the LAA, thrombus formation is prevented, potentially preventing stroke. Following implantation of the device, the patient receives warfarin for one to two months. Once it is established that there is no peridevice leak or thrombus development, the patient is then placed on antiplatelet agents indefinitely.

Comparators
The current treatment for stroke prevention in patients with AF is systemic anticoagulation. While anticoagulants are effective in preventing stroke, the increased risk of bleeding is a potential harm. Warfarin, which is the most common anticoagulant in use, requires frequent monitoring and lifestyle changes. Other anticoagulants, found to be noninferior to warfarin, include dabigatran, rivaroxaban, and apixaban.

Outcomes
The general outcomes of interest are rates of ischemic or hemorrhagic stroke, cardiovascular or unexplained death, and systemic embolism, measured between 6 to 12 months of follow-up. Additional outcomes of interest include device- or procedure-related events that may occur within one week of the procedure. In particular, events requiring open cardiac surgery or major endovascular intervention (eg, pseudoaneurysm repair, arteriovenous fistula repair, or other major endovascular repair) should be noted.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:
- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies;
- To assess long-term outcomes and adverse effects, single-arm studies that capture longer periods of follow-up and/or larger populations were sought;
- Studies with duplicative or overlapping populations were excluded.

Systematic Reviews
A TEC Assessment (2014) evaluated the use of the Watchman device for patients eligible and ineligible for anticoagulation therapy.4 The Assessment determined that the device did not meet TEC criteria. The Assessment made the following conclusions about the use of LAAC in patients without contraindications to anticoagulation:
"We identified 2 randomized controlled trials (RCTs) and 1 case series evaluating the Watchman™ device. The RCTs were noninferiority trials and compared LAAC with
anticoagulation. The first trial showed a lower rate of a composite outcome (stroke, death, and embolism) in patients receiving LAAC and met noninferiority criteria compared with anticoagulation, but FDA [Food and Drug Administration] review noted problems with patient selection, potential confounding with other treatments, and losses to follow-up. The second trial, which incorporated the first trial’s results as a discounted informative prior in a Bayesian analysis, showed similar rates of the same composite outcome but did not meet noninferiority criteria. The second trial met its second principal outcome noninferiority criteria in 1 of 2 analyses and a performance goal for short-term complication rate. When assessing the results of both trials, the relative performance of LAAC and anticoagulation is uncertain.”

A number of systematic reviews published after the TEC Assessment have combined the results of the available RCTs. Others have included RCTs and observational studies. The most rigorous meta-analysis is the patient-level meta-analysis by Holmes et al (2015). This analysis included patient-level data from the industry-sponsored PROTECT AF and PREVAIL trials (described below), together with both studies' continued access registries. The PROTECT AF and PREVAIL registries were designed to include patients with similar baseline characteristics as their respective RCTs. The meta-analysis included 2406 patients, 1877 treated with the Watchman device and 382 treated with warfarin alone. Mean patient follow-up durations were 0.58 years and 3.7 years, respectively, for the PREVAIL continued access registry, and the PROTECT AF continued access registry. In a meta-analysis of 1114 patients treated in the RCTs, compared with warfarin, LAAC met the trial’s noninferiority criteria for the primary composite efficacy endpoint of all-cause stroke, systemic embolization, and cardiovascular death (hazard ratio [HR], 0.79, 95% confidence interval [CI], 0.52 to 1.2; p=0.22). All-cause stroke rates did not differ significantly between groups (1.75 per 100 patient-years for LAAC vs 1.87 per 100 patient-years for warfarin; HR=1.02; 95% CI, 0.62 to 1.7; p=0.94). LAAC-treated patients had higher rates of ischemic stroke (1.6 events per 100 patient-years vs 0.9 events per 100 patient-years; HR=1.95, p=0.05) when procedure-related strokes were included but had lower rates of hemorrhagic stroke (0.15 events per 100 patient-years vs 0.96 events per 100 patient-years; HR=0.22; 95% CI, 0.08 to 0.61; p=0.004).

A second patient-level meta-analysis of the 2 RCTs, reported by Price et al (2015), focused on bleeding outcomes. There were 54 episodes of major bleeding, with the most common types being gastrointestinal bleed (31/54 [57%]) and hemorrhagic stroke (9/54 [17%]). On combined analysis, the rate of major bleeding episodes over the entire study period did not differ between groups. There were 3.5 events per 100 patient-years in the Watchman group compared with 3.6 events per 100 patient-years in the anticoagulation group, for a rate ratio of 0.96 (95% CI, 0.66 to 1.40; p=0.84). However, there was a reduction in bleeding risk for the Watchman group past the initial periprocedural period. For bleeding events occurring more than 7 days postprocedure, the event rates were 1.8 per 100 patient-years in the Watchman group compared with 3.6 per 100 patient-years in the anticoagulation group (rate ratio, 0.49; 95% CI, 0.32 to 0.75; p=0.01). For bleeding events occurring more than 6 months postprocedure (the time at which antiplatelet therapy is discontinued for patients receiving the Watchman device), the event rates were 1.0 per 100 patient-years in the Watchman group compared with 3.5 per 100 patient-years in the anticoagulation group (rate ratio, 0.28; 95% CI, 0.16 to 0.49; p<0.001).

Additional systematic reviews have used network meta-analyses to compare vitamin K antagonists with the Watchman devise and with novel oral anticoagulants (6 RCTs, total
n=59627 subjects),15 and have compared percutaneous LAA occlusion (5 RCTs, total n=1285 subject) with standard anticoagulant or antiplatelet therapy with device-based surgical or percutaneous LAA exclusion.16 In the network meta-analysis comparing vitamin K antagonists with novel oral anticoagulants and with the Watchman device, Bajaj et al (2016) report that all the treatment strategies had comparable ischemic stroke rates. However, the cluster analyses showed the novel oral anticoagulants ranked best in safety and efficacy, followed by vitamin K antagonists, and then the Watchman device. Interpretation of these results is limited by the small sample sizes and population heterogeneity in the RCTs comparing the Watchman with vitamin K antagonists.15 The network meta-analysis comparing LAAC with oral anticoagulants, antiplatelets, and placebo, reported a trend in stroke and mortality favoring LAAC, but the differences were not statistically significant. The authors noted that overall quality of the evidence was low.

Baman et al (2018) conducted a systematic review of LAA closure devices, including Watchman, Amplatzer cardiac plug, Amplatzer Amulet, and Lariat devices.17 The literature search, conducted through April 2017, identified 2 RCTs and 15 registry studies. No meta-analyses were conducted. The authors concluded that the Watchman may be noninferior to warfarin and that long-term efficacy outcomes are promising. For the remaining devices included in the review, the authors note that high-quality prospective studies comparing the devices to each other and with anticoagulants are needed.

Randomized Controlled Trials
Described below are two RCTs comparing the Watchman with oral anticoagulants and one RCT comparing the Watchman to the AMPLATZER cardiac plug.

\textit{PROTECT AF Trial}

The first RCT published was PROTECT AF, an unblinded randomized trial evaluating the noninferiority of an LAAC device compared with warfarin for stroke prevention in AF.18 The trial randomized 707 patients from 59 centers in the U. S. and Europe to the Watchman device or warfarin treatment in a 2:1 ratio. Mean follow-up was 18 months. The primary efficacy outcome was a composite endpoint of stroke (ischemic or hemorrhagic), cardiovascular or unexplained death, or systemic embolism. There was also a primary safety outcome, a composite endpoint of excessive bleeding (intracranial or gastrointestinal bleeding) and procedure-related complications (pericardial effusion, device embolization, procedure-related stroke).

The primary efficacy composite outcome occurred at a rate of 3.0 per 100 patient-years in the LAAC group compared with 4.9 per 100 patient-years in the warfarin group (rate ratio, 0.62; 95% credible interval [CrI], 0.35 to 1.25). Based on these outcomes, the probability of noninferiority was greater than 99.9%. For the individual components of the primary outcome, hemorrhagic stroke and cardiovascular/unexplained death were higher in the warfarin group; however, ischemic stroke was higher in the LAAC group at 2.2 per 100 patient-years compared with 1.6 per 100 patient-years in the warfarin group (rate ratio, 1.34; 95% CrI, 0.60 to 4.29).

The primary safety outcome occurred more commonly in the LAAC group, at a rate of 7.4 per 100 patient-years compared with 4.4 per 100 patient-years in the warfarin group (rate ratio, 1.69; 95% CrI, 1.01 to 3.19). The excess in adverse event rates for the LAAC group was primarily the result of early adverse events associated with device placement. The most frequent
type of complication related to LAAC device placement was pericardial effusion requiring intervention, which occurred in 4.8% (22/463) of patients.

Longer term follow-up from the PROTECT AF trial was reported by Reddy et al (2013).\(^{19}\) At a mean follow-up of 2.3 years, the results were similar to the initial report. The relative risk for the composite primary outcome in the Watchman group compared with anticoagulation was 0.71, and this met noninferiority criteria with a confidence greater than 99%. Complications were more common in the Watchman group, with an estimated rate of 5.6% per year, compared with 3.6% per year in the warfarin group.

Outcomes through 4 years of follow-up were reported by Reddy et al (2014).\(^{20}\) Mean follow-up was 3.9 years in the LAAC group and 3.7 years in the warfarin group. In the LAAC group, warfarin was discontinued in 345 (93.2%) of 370 patients by the 12-month follow-up evaluation. During the follow-up period, the relative risk for the composite primary outcome in the Watchman group compared with anticoagulation was 0.60 (8.4% in the device group vs 13.9% in the anticoagulation group; 95% CrI, 0.41 to 1.05), which met the noninferiority criteria with a confidence greater than 99.9%. Fewer hemorrhagic strokes (0.6% vs 4.0%; rate ratio, 0.15; 95% CrI, 0.03 to 0.49) and fewer cardiovascular events (3.7% vs 0.95%; rate ratio, 0.40; 95% CrI, 0.23 to 0.82) occurred in the Watchman group. Rates of ischemic stroke did not differ significantly between groups, but Watchman patients had lower all-cause mortality rates than anticoagulation patients (12.3% vs 18.0%; HR=0.66; 95% CI, 0.45 to 0.98; p=0.04).

Alli et al (2013) reported on quality-of-life parameters, as measured by change in the 12-Item Short-Form Health Survey scores from baseline to 12-month follow-up, for a subset of 547 subjects in the PROTECT AF trial.\(^{21}\) For the subset of PROTECT AF subjects included in the Alli et al (2013) analysis, at baseline, control group subjects had a higher mean CHADS\(_2\) score (2.4 vs 2.2; p=0.052) and were more likely to have a history of coronary artery disease (49.5% vs 39.6%; p=0.028). For subjects in the Watchman group, the 12-Item Short-Form Health Survey total physical score improved in 34.9% and was unchanged in 29.9%; for those in the warfarin group, the total physical score improved in 24.7% and was unchanged in 31.7% (p=0.01).

Five-year follow-up results, published by Reddy et al (2017), indicated that the LAAC group had significantly lower rates of the composite efficacy endpoint (stroke, systemic embolism, cardiovascular death) compared with the warfarin-only group (p=0.04).\(^{22}\)

PREVAIL Trial

A second RCT, the PREVAIL trial, was conducted after the 2009 FDA decision on the Watchman device to address some limitations of the PROTECT AF trial, including its inclusion of patients with low-stroke risk (CHADS\(_2\) scores of 1), high rates of adjunctive antiplatelet therapy use in both groups, and generally poor compliance with warfarin therapy in the control group. Results from the PREVAIL trial were published by Holmes et al (2014).\(^{23}\) In the PREVAIL trial, 461 subjects enrolled at 41 sites were randomized in a 2:1 fashion to the Watchman device or control, which consisted of either initiation or continuation of warfarin therapy with a target international normalized ratio of 2.0 to 3.0. Subjects had nonvalvular AF and required treatment for prevention of thromboembolism based on a CHADS\(_2\) score of 2 or higher (or ≥1 with other indications for warfarin therapy based on American College of Cardiology, American Heart Association, and European Society of Cardiology joint guidelines) and were eligible for warfarin therapy. In the...
device group, warfarin and low-dose aspirin were continued until 45 days postprocedure; if a follow-up echocardiogram at 45 days showed occlusion of the LAA, warfarin therapy could be discontinued. Subjects who discontinued warfarin were treated with aspirin and clopidogrel for 6 months after device implantation and with aspirin 325 mg indefinitely after that.

Three noninferiority primary efficacy endpoints were specified: (1) occurrence of ischemic or hemorrhagic stroke, cardiovascular or unexplained death, and systemic embolism (18-month rates); (2) occurrence of late ischemic stroke and systemic embolization (beyond 7 days postrandomization, 18-month rates); and (3) occurrence of all-cause death, ischemic stroke, systemic embolism, or device- or procedure-related events requiring open cardiac surgery or major endovascular intervention (eg, pseudoaneurysm repair, arteriovenous fistula repair, or other major endovascular repair) occurring within 7 days of the procedure or by hospital discharge, whichever was later. The 18-month event rates were determined using Bayesian statistical methods to integrate data from the PROTECT AF trial. All patients had a minimum follow-up of six months. For randomized subjects, mean follow-up was 11.8 months, and median follow-up was 12.0 months (range, 0.03-25.9 months).

For the first composite primary endpoint, the 18-month modeled rate ratio between the device and control groups was 1.07 (95% CrI, 0.57 to 1.89). Because the upper bound of the 95% CrI was above the preset noninferiority margin of 1.75, the noninferiority criteria were not met. For the second primary endpoint of late ischemic stroke and systemic embolization, the 18-month relative risk between the device and control groups was 1.6 (95% CrI, 0.5 to 4.2), with an upper bound of the 95% CrI above the preset noninferiority margin of 2.0. The rate difference between the device and control groups was 0.005 (95% CrI, -0.019 to 0.027). The upper bound of the 95% CrI was lower than the noninferiority margin of 0.0275, so the noninferiority criterion was met for the rate difference. For the third primary endpoint (major safety issues), the noninferiority criterion was met.

Five-year follow-up results, published by Reddy et al (2017), indicated that the Watchman device was noninferior to warfarin alone in the composite efficacy endpoint (stroke, systemic embolism, cardiovascular death) (p=0.5).22

In addition to providing 5-year final results for the individual trials, Reddy et al (2017) conducted a meta-analysis of the 5-year outcomes using data from both trials.22 Meta-analytic results are summarized in Table 2, showing that the Watchman device is noninferior to warfarin alone in stroke prevention among patients with nonvalvular AF. Also, patients treated with the Watchman device experienced significantly lower bleeding and mortality compared with patients receiving warfarin.

Table 2. Five-Year Meta-Analytic Results for the PROTECT AF and PREVAIL AF Trials

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Watchman, n (Rate per 100 PY), %</th>
<th>Warfarin Alone, n (Rate per 100 PY), %</th>
<th>HR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite stroke/SE/CV death</td>
<td>79 (2.8)</td>
<td>50 (3.4)</td>
<td>0.8 (0.6 to 1.2)</td>
<td>0.3</td>
</tr>
<tr>
<td>All stroke or SE</td>
<td>49 (1.7)</td>
<td>27 (1.8)</td>
<td>1.0 (0.6 to 1.5)</td>
<td>0.9</td>
</tr>
<tr>
<td>CV/unexplained death</td>
<td>39 (1.3)</td>
<td>33 (2.2)</td>
<td>0.6 (0.4 to 0.9)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Contains Public Information
Outcomes

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Watchman, n (Rate per 100 PY), %</th>
<th>Warfarin Alone, n (Rate per 100 PY), %</th>
<th>HR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cause death</td>
<td>106 (3.0)</td>
<td>73 (4.9)</td>
<td>0.7 (0.5 to 1.0)</td>
<td>0.03</td>
</tr>
<tr>
<td>Major bleeding, all</td>
<td>85 (3.1)</td>
<td>50 (3.5)</td>
<td>0.9 (0.6 to 1.3)</td>
<td>0.6</td>
</tr>
<tr>
<td>Major bleeding, non-LAAC-related</td>
<td>48 (1.7)</td>
<td>51 (3.6)</td>
<td>0.5 (0.3 to 0.7)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Chun et al (2013) compared the Watchman device with the Amplatzer cardiac plug among patients who had nonvalvular AF, were at high-risk for stroke, and had a contraindication to or were unwilling to take oral anticoagulants.24, Eighty patients were randomized to LA occlusion with the Watchman or the Amplatzer device. After device implantation, either preexisting oral anticoagulation therapy or dual-platelet inhibition with aspirin and clopidogrel was continued for six weeks. There were no statistically significant differences in procedure time, fluoroscopy time, or major safety events between the two groups. At a median follow-up of 364 days, there were no cases of stroke, transient ischemic attack, or other bleeding complications.

Nonrandomized Studies

Numerous case series and nonrandomized studies of the Watchman have been published.25,26,27,28,29, Several are notable in that they were conducted in patients not eligible for anticoagulation, a population not included in PROTECT AF and PREVAIL. Reddy et al (2013) conducted a multicenter, prospective, nonrandomized trial to evaluate the safety and efficacy of LAAC with the Watchman device in patients who had nonvalvular AF, with a CHADS2 score 1 or higher, and were considered ineligible for warfarin.30, Postimplantation, patients received six months of clopidogrel or ticlopidine and lifelong aspirin therapy. Thirteen (8.7%) patients had a procedure- or device-related serious adverse event, most commonly pericardial effusion (three patients). Over a mean follow-up of 14.4 months, all-cause stroke or systemic embolism occurred in 4 patients.

The EWOLUTION Watchman registry tracks procedural success, long-term outcomes, and adverse events in real-world settings. This registry compiles data from patients receiving the Watchman device at 47 centers in 13 countries. Analysis of the EWOLUTION registry data by Boersma et al (2016) reported 30-day outcomes after device implantation in 1021 patients.31, The overall population had a risk of bleeding that was substantially higher than that for patients in the RCTs. Over 62% of patients included in the registry were deemed ineligible for anticoagulation by their physicians. Approximately one-third of patients had a history of major bleeding, and 40% had HAS-BLED scores of 3 or greater, indicating moderate- to high-risk of bleeding. Procedural success was achieved in 98.5% of patients, and 99.3% of implants demonstrated no blood flow or minimal residual blood flow postprocedure. Serious adverse events due to the device or procedure occurred at an overall rate of 2.8% (95% CI, 1.9% to 4.0%) at 7 days and 3.6% (95% CI, 2.5% to 4.9%) at 30 days. The most common serious adverse event was major bleeding.
Dukkipati et al (2018) studied the incidence, predictors, and clinical outcomes of device-related thrombus (DRT) among the following patients receiving the Watchman in the following trials and registries: PROTECT-AF, PREVAIL, Continued Access to PROTECT-AF registry, and Continued Access to PREVAIL registry.32, Surveillance transesophageal electrocardiograms were conducted in all patients at 45 days and 12 months. A total of 1739 patients were followed for a total of 7159 patient-years. Mean age of the population was 74 years and 34% were women. DRT was detected in 65 (3.7%) of the patients. Stroke or systemic embolism rates were 7.5 and 1.8 per 100 patient-years for patients with and without DRT, respectively. A multivariable modeling analysis found the following predictors of DRT: history of transient ischemic attack or stroke, permanent AF, vascular disease, LAA diameter, and left ventricular ejection fraction.

Jazayeri et al (2018) evaluated the safety profiles of the Watchman and the Lariat devices, using the FDA's Manufacturer and User Facility Device Experience (MAUDE) database from 2009 to 2016.33, MAUDE consists of mandatory reports from manufacturers and voluntary reports from healthcare professionals and patients. Outcomes assessed included: a composite of stroke/TIA, pericardiocentesis, cardiac surgery, and death; DRT; cardiac surgery; and myocardial infarction. A total of 5849 Watchman devices were implanted, with 472 events reported during the study period. The most common events in patients receiving the Watchman, were device malfunction (97 [1.7%]), pericardial effusion (84 [1.4%]), need for pericardiocentesis (57 [0.97%]), and intracardiac thrombus (47 [0.84%]). Twenty deaths were reported in the Watchman group, with one likely related to DRT. Compared to the Lariat device, the composite outcome occurred significantly more in the group receiving the Watchman than within the group receiving the Lariat, 1.9% vs 1.1%, p=0.001. Analysis results for the Lariat device will be discussed in the next section, "Other Closure Devices".

Section Summary: Watchman Device
The most relevant evidence on the use of the Watchman device for LAAC in patients eligible for anticoagulation derives from two industry-sponsored RCTs comparing Watchman and systemic anticoagulants and a patient-level meta-analysis of those studies. After five years of follow-up, meta-analytic results showed that the ischemic stroke risk beyond seven days did not differ between groups and that the hemorrhagic stroke risk remained significantly lower in the LAAC group. The results showed that the Watchman device is noninferior to warfarin alone in stroke prevention among patients with nonvalvular AF. Also, patients treated with the Watchman device experienced significantly lower bleeding and mortality. A large study of patients receiving the Watchman device (combining patients from the two RCTs and two registries) reported that patients who developed DRT were four times more likely to experience a stroke or systemic embolism. The authors suggest a surveillance strategy for patients at high-risk of DRT following Watchman implantation.

Other Closure Devices
Clinical Context and Therapy Purpose
The purpose of other LAA closure devices in patients who have AF and are at increased risk for embolic stroke is to provide a treatment option that is an alternative to or an improvement on existing therapies.
The question addressed in this evidence review is: Does the use of other LAA closure devices improve net health outcomes compared with systemic anticoagulation treatment in patients with AF who are at increased risk for embolic stroke?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is patients with AF. AF causes a low flow state in the left atrium which increases the risk of thromboembolism. Strokes in patients with AF occur primarily due to thromboembolism from the left atrium. Patients with AF who are not treated have a 5% estimated incidence of stroke.

Interventions
The interventions of interest are other LAA occlusion devices. By occluding the LAA, thrombus formation is prevented, potentially preventing stroke. Other devices currently being evaluated for the use of LAA occlusion include:

- The Lariat Loop Applicator is a suture delivery device approved by the FDA to facilitate suture placement and knot tying for use in surgical applications where soft tissues are being approximated or ligated with a pretied polyester suture. The approved use does not specify LAA occlusion. While the Watchman and other devices are implanted in the endocardium, the Lariat is a non-implant epicardial device. The Lariat is contraindicated in patients with active pericarditis; prior sternotomy or other mediastinal surgery or known pericardial adhesions; appendage width >45 mm; superiorly oriented appendage lying near or behind the pulmonary arterial trunk; or appendage thrombus.

- The Amplatzer Amulet device comes in eight sizes to accommodate various patient anatomies. The mechanism of action is similar to the Watchman. Following implantation of the Amulet, patients are placed on antiplatelet agents and do not need warfarin. There is an ongoing trial comparing the Amplatzer Amulet with the Watchman (NCT03399851).

Comparators
The current treatment for stroke prevention in patients with AF is systemic anticoagulation. While anticoagulants are effective in preventing stroke, the increased risk of bleeding is a potential harm. Warfarin, which is the most common anticoagulant in use, requires frequent monitoring and lifestyle changes. Other anticoagulants, found to be noninferior to warfarin include dabigatran, rivaroxaban, and apixaban.

Outcomes
The general outcomes of interest are rates of ischemic or hemorrhagic stroke, cardiovascular or unexplained death, and systemic embolism, measured between 6 to 12 months of follow-up. Additional outcomes of interest include device- or procedure-related events that may occur within one week of the procedure, in particular, events requiring open cardiac surgery or major endovascular intervention (eg, pseudoaneurysm repair, arteriovenous fistula repair, or other major endovascular repair).

Study Selection Criteria
Methodologically credible studies were selected using the following principles:
To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;

In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies;

To assess long-term outcomes and adverse effects, single-arm studies that capture longer periods of follow-up and/or larger populations were sought;

Studies with duplicative or overlapping populations were excluded.

Lariat Device

Systematic Review

A systematic review of studies on the Lariat device was published by Chatterjee et al (2015). No RCTs were identified. Five case series were included, with a total of 309 patients (range, 4-154 patients). The combined estimate of procedural success was 90.3%. One (0.3%) death was reported and 7 (2.3%) patients required urgent cardiac surgery. Reviewers also searched the MAUDE database for adverse events and found 35 unique reports. Among the 35 reported complications, there were 5 deaths and 23 cases of emergency cardiac surgery.

Case Series

Individual case series published since the systematic review included a large 2016 case series of 712 consecutive patients from 18 U.S. hospitals. This series reported a procedural (suture deployment) success rate of 95% and complete closure rate in 98%. The high success rate was attributed to the appropriate selection of patients for the procedure, which was determined by a screening computed tomography scan showing if the LAA anatomy was suitable for LARIAT deployment. There was one death, and emergent cardiac surgery was required in 1.4%. Cardiac perforations (overall and those needing surgery) and the number of patients needing blood transfusions decreased when providers altered the procedure from using large bore needles to micropuncture needles. Other individual case series are smaller, reporting success rates and complication rates in the same range.

Litwinowicz et al (2018) presented a case series of 139 patients from a single-center undergoing LAA closure with the Lariat device, with a longer follow-up than the other case series. After a follow-up of 5-years (428 patient-years), the thromboembolism rate was 0.8%, with a calculated bleeding risk reduction of 78%. The overall mortality rate was 1.6%.

Non-Randomized Comparative Study

As described above in the Watchman section, Jazayeri et al (2018) evaluated the safety profiles of the Watchman and the Lariat devices, using the FDA’s MAUDE database from 2009 to 2016. A total of 4889 Lariat devices were implanted, with 136 events reported during the study period. The most common events in the Lariat group were pericardial effusion (46 [0.94%]), need for cardiac surgery (38 [0.78%]), and pericardiocentesis (23 [0.47%]). Ten deaths were reported in the Lariat group, with six involving tightening of the suture around the LAA. Compared to the Watchman device, the composite outcome occurred significantly more in the group receiving the Watchman than in the group receiving the Lariat, 1.9% vs 1.1%, p=0.001.

Litwinowicz et al (2019) compared outcomes of patients undergoing LAA closure with the Lariat device (n=57) with patients receiving either warfarin or clopidogrel (n=31). Age, sex, and
comorbidities were similar between the two groups. Treatment prior to the study differed significantly. The Lariat group received warfarin (93%), aspirin (4%), aspirin plus clopidogrel (2%) and no anticoagulation (1%). The control group received warfarin (87%) or clopidogrel (13%). However, there was no significant difference in CHA2DS2-VAS scores between the groups at baseline. Average follow-up in the Lariat group was 59 months and average follow-up in the control group was 60 months. There were no thromboembolic events in the Lariat group, while 9.6% of the control group experienced thromboembolic events (p=0.02). The bleeding risk reduction in the Lariat group was estimated at 53%.

Section Summary: Lariat Device

There are no RCTs of the Lariat device for LAAC. There was one non-randomized study comparing patients undergoing LAA closure with the Lariat device with patients receiving either anticoagulant or antiplatelet therapy. Results showed significantly fewer thromboembolic events in the group undergoing LAA closure with the Lariat device compared with the group receiving medication alone. The remaining evidence consisted of case series. The evidence is insufficient to draw conclusions about treatment efficacy.

Amplatzer Cardiac Plug Device and Amplatzer Amulet Device

Amplatzer Cardiac Plug (First Generation)

The available evidence on the use of the Amplatzer device for left atrial occlusion consists of a number of case series. The largest series identified was by Nietlispach et al (2013), which included 152 patients from a single institution in Europe. Short-term complications occurred in 9.8% (15/152) of patients. The longer term adverse outcomes occurred in 7% of patients, including two strokes, one peripheral embolization, and four episodes of major bleeding. Device embolization occurred in 4.6% (7/152) of patients. Other reports of patients treated with the Amplatzer device include a series of 90 patients from Belgium (2013), 86 patients from Portugal (2012), 37 patients from Italy (2013), 35 patients from Spain (2013), 21 patients from Poland (2013), and 20 patients from China (2012). All series reported high procedural success rates, as well as complications such as vascular events, air embolism, esophageal injury, cardiac tamponade, and device embolization.

Several other case series have reported on the use of the Amplatzer device in patients with a contraindication to oral anticoagulation therapy. The largest, by Santoro et al (2016), reported on outcomes up to 4 years postprocedure, for 134 patients with nonvalvular AF and a long-term contraindication to oral anticoagulation treated with the Amplatzer device. Patients had a median CHA2DS2-VASc score of four and were generally considered at high-risk for bleeding complications. Procedural success occurred in 93.3%, and 3 major procedure-related complications (2 cases of cardiac tamponade, 1 case of pericardial effusion requiring drainage or surgery) occurred. Over a mean follow-up of 680 days, observed annual rates of ischemic strokes and any thromboembolic events were 0.8% and 2.5%, respectively. Other case series have been published in this population, evaluating between 37 and 100 patients. These studies also reported high success rates and low procedural complications.

Amplatzer Amulet (Second Generation)

A second generation device, the Amplatzer Amulet was developed to potentially lower device embolization rates, simplify the technical implantation procedure, and lower severe complication rates. The Amulet first became available in Europe in January 2013. Below are descriptions of
studies comparing the amulet with the first generation cardiac plug. There is currently an ongoing trial comparing the Amplatzer Amulet with the Watchman (NCT03399851).

Case Series
Landmesser et al (2017) presented periprocedural (within 7 days of procedure) and early clinical outcomes (1 to 3 months postprocedure) from a multicenter registry of 1088 patients receiving the Amplatzer Amulet between June 2015 and September 2016. Technical success was defined as implantation of the device in the correct position, which was reported for 1078 (99%) of the patients. A composite of ischemic stroke, systemic embolism, and cardiovascular death occurred in 7 (0.6%) patients during the periprocedural period and in 15 (1.4%) patients between 7 days postprocedure and 3 months follow-up.

Landmesser et al (2018) provided updated analyses on 950 patients from the registry series described above who had 1-year follow-up data. Oral anticoagulants were used by 6% of the patients at 3, 6, and 12 months postprocedure. There were 29 ischemic strokes (27 patients), 9 patients experiencing a transient ischemic attack, and no systemic embolisms reported. The annualized bleeding rate was 10.3% per year, with 103 events in 87 patients, majority occurring within the first 7 days postprocedure. The DRT rate was 1.7% per year, with 18 events in 17 patients. A total of 88 patients died within the first year postprocedure, 53 were cardiovascular-related and 35 noncardiovascular. Two of the cardiovascular-related deaths were attributed to the device.

Non-Randomized Comparative Studies
Gloekler et al (2015) reviewed records from 2 university hospitals' occlusion registries and conducted a retrospective analysis comparing the last 50 consecutive patients receiving the cardiac plug with the first 50 consecutive patients receiving the amulet. Follow-up examinations were performed between four to six months post-procedure. No significant differences between the two devices were detected in mortality, neurologic events, late pericardial effusions, major bleeding, device leaks, or device thrombi. Interpretation of these results is limited by the small sample size and short follow-up period.

Al-Kassou et al (2017) presented periprocedural and 2 to 3 month follow-up data for patients undergoing LAA occlusion with the Amplatzer cardiac plug and the Amplatzer Amulet. Periprocedural data was available for 99 patients receiving the cardiac plug and for 97 patients receiving the Amulet. Use of the Amulet was associated with significantly lower fluoroscopy time, lower radiation dose, and reduced amount of contrast dye. Occurrence of adverse events during the periprocedural period were comparable. Transesophageal echocardiographic follow-up data at 2 to 3 months was available for 81 patients receiving the cardiac plug and for 82 patients receiving the Amulet. None of the patients experienced DRT during this follow-up. Minor leaks were detected in 12 (15%) patients receiving the cardiac plug and in 4 (5%) patients receiving the Amulet (p=0.03).

Section Summary: Amplatzer Cardiac Plug Device and Amplatzer Amulet
There are no RCTs of the Amplatzer device for LAAC. There are two non-randomized studies comparing the first generation Amplatzer cardiac plug with the second generation Amplatzer Amulet, one of which reported procedural advantages of the Amulet over the cardiac plug. Both nonrandomized comparator studies reported no difference in clinical outcomes at first
follow-up, two to six months. The remaining evidence consists of case series. The nonrandomized comparator studies and the case series are insufficient to draw conclusions about treatment efficacy. There is an ongoing trial comparing the Amplatzer Amulet with the Watchman (NCT03399851).

SUMMARY OF EVIDENCE

For individuals who have AF who are at increased risk for embolic stroke who receive the Watchman percutaneous LAAC device, the evidence includes two RCTs and meta-analyses of these trials. The relevant outcomes are overall survival, morbid events, and treatment-related morbidity. The most relevant evidence comes from two industry-sponsored RCTs that compared the Watchman device with anticoagulation alone. One trial reported noninferiority on a composite outcome of stroke, cardiovascular/unexplained death, or systemic embolism after two years of follow-up, with continued benefits with the Watchman device after four years of follow-up. The second trial did not demonstrate noninferiority for the same composite outcome but did demonstrate noninferiority of the Watchman device to warfarin for late ischemic stroke and systemic embolization. Patient-level meta-analyses at five-year follow-up for the two trials reported that the Watchman device is noninferior to warfarin on the composite outcome of stroke, systemic embolism, and cardiovascular death. Also, the Watchman was associated with lower rates in major bleeding, particularly hemorrhagic stroke, and mortality over the long-term. The evidence also indicates that the Watchman device is efficacious in preventing stroke in the subset of patients with AF who are at increased risk for embolic stroke. Among patients in which the long-term risk of systemic anticoagulation exceeds the procedural risk of device implantation, the net health outcome will be improved. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have AF who are at increased risk for embolic stroke who receive a percutaneous LAAC device other than the Watchman device (eg, the Lariator Amplatzer), the evidence includes several nonrandomized comparator studies and uncontrolled case series. The relevant outcomes are overall survival, morbid events, and treatment-related morbidity. One nonrandomized study which compared outcomes among patients undergoing LAAC with the Lariat device with patients receiving anticoagulant or antiplatelet therapy, reported fewer thromboembolic events in the group receiving the Lariat device. Two nonrandomized studies compared the Amplatzer cardiac plug with the Amplatzer amulet. While the amulet may be technically easier to implant, clinical outcomes were similar between the two groups. The remaining evidence consists of case series of these devices which report high procedural success but also numerous complications. In addition, these devices do not have the FDA approval for LAAC. The evidence is insufficient to determine the effects of the technology on health outcomes.

CLINICAL INPUT RECEIVED FROM PHYSICIAN SPECIALTY SOCIETIES AND ACADEMIC MEDICAL CENTERS

While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

In response to requests, input was received from 1 physician specialty society (2 responses) and 4 academic medical centers, one of which provided 4 responses, for a total of 8 responses,
while this policy was under review in 2015. The input generally supported the use of an FDA-approved LAA closure device for patients with an increased risk of stroke and systemic embolism based on CHADS₂ or CHA₂DS₂-VASc score and systemic anticoagulation therapy is recommended but the long-term risks of systemic anticoagulation outweigh the risks of the device implantation.

PRACTICE GUIDELINES AND POSITION STATEMENTS

American Heart Association

The American Heart Association, in collaboration with the American College of Cardiology and the Hearth Rhythm Society (2019) published an update of their guideline for the management of patients with atrial fibrillation. A new recommendation in the guideline states: "Percutaneous LAA occlusion may be considered in patients with AF at increased risk of stroke who have contraindications to long-term anticoagulation." The class of recommendation is IIb and the level of evidence is B_NR (moderate quality of evidence, non-randomized). No other LAA closure devices are mentioned in the guideline.

Guideline Comparison

Andrade et al (2017) provided the following summary (see Table 3) comparing guidelines by American, Canadian, and European societies on left atrial appendage exclusion and closure for the management of atrial fibrillation.

Table 3. Comparison of American, Canadian, and European Guidelines on LAA Exclusion/Closure

<table>
<thead>
<tr>
<th>Procedure</th>
<th>AHA/ACC/HRS</th>
<th>CCS</th>
<th>ESC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical LAA closure (excision or obliteration of LAA)</td>
<td>May be considered in patients undergoing cardiac surgery (IIb)</td>
<td>Should be considered as part of surgical ablation of AF associated with mitral, aortic valve, or coronary artery bypass surgery</td>
<td>• May be considered in patients undergoing cardiac surgery (IIb) • More data needed to confirm safety and efficacy of thoracoscopic exclusion</td>
</tr>
<tr>
<td>Percutaneous LAA exclusion</td>
<td>No recommendation</td>
<td>Not be used, except in research or in systematically documented use protocols in patients at high risk of stroke (CHADS<sub>2</sub> ≥2) and antithrombotic therapy precluded</td>
<td>May be considered in patients with contraindications for long term anticoagulant treatment (IIb)</td>
</tr>
</tbody>
</table>

Adapted from Andrade et al (2017). ACC: American College of Cardiology; AF: atrial fibrillation; AHA: American Heart Association; CCS: Canadian Cardiovascular Society; CHADS₂: Congestive Heart Failure, Hypertension, Age, Diabetes, Stroke/Transient Ischemic Attack; ESC: European Society of Cardiology; HRS: Heart Rhythm Society; LAA: left atrial appendage.

U.S. PREVENTIVE SERVICES TASK FORCE RECOMMENDATIONS

Not applicable.

ONGOING AND UNPUBLISHED CLINICAL TRIALS

Some currently unpublished trials that might influence this policy are listed in Table 4.

Table 4. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td>Left Atrial Appendage Closure with SentreHeart Lariat Device</td>
<td>50</td>
<td>Mar 2019</td>
</tr>
</tbody>
</table>
Percutaneous Left Atrial Appendage Closure Devices for Stroke Prevention in Atrial Fibrillation

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT03276169</td>
<td>Left Atrial Function Changes after Left Atrial Appendage Closure in Patients with Persistent Atrial Fibrillation</td>
<td>105</td>
<td>Nov 2019</td>
</tr>
<tr>
<td>NCT02513797*</td>
<td>aMAZE Study: LAA Ligation with the LARIAT Suture Delivery System as Adjunctive to Pulmonary Vein Isolation for Persistent Atrial Fibrillation (aMAZE)</td>
<td>600</td>
<td>Dec 2019</td>
</tr>
<tr>
<td>NCT02426944</td>
<td>Left Atrial Appendage Closure vs Novel Anticoagulation Agents in Atrial Fibrilation</td>
<td>400</td>
<td>May 2020</td>
</tr>
<tr>
<td>NCT02879448</td>
<td>AMPLATZER™ Amulet™ Left Atrial Appendage Occluder Randomized Controlled Trial</td>
<td>1878</td>
<td>Dec 2023</td>
</tr>
<tr>
<td>NCT03302494*</td>
<td>aMAZE Study: LAA Ligation with the LARIAT Suture Delivery System as Adjunctive to Pulmonary Vein Isolation for Persistent Atrial Fibrillation (aMAZE)</td>
<td>1250</td>
<td>Dec 2025</td>
</tr>
<tr>
<td>NCT03204695*</td>
<td>A Prospective, Multicenter, Non-Randomized, Post-market Clinical Follow-up Study to Confirm Safety and Performance of the Coherex WaveCrest Left Atrial Appendage Occlusion System in Patients with Non-valvular Atrial Fibrillation</td>
<td>65</td>
<td>Mar 2020</td>
</tr>
<tr>
<td>NCT02964208*</td>
<td>AMPLATZER LAA Occluder Post Approval Study (PAS)</td>
<td>1000</td>
<td>Oct 2023</td>
</tr>
<tr>
<td>NCT03399851</td>
<td>Comparison of Amplatzer Amulet vs. Watchman Device in Patients Undergoing Left Atrial Appendage Closure: the SWISS-APERO Randomized Clinical Trial</td>
<td>200</td>
<td>Feb 2025</td>
</tr>
<tr>
<td>NCT03309332*</td>
<td>Comparison of Amplatzer Amulet vs. Watchman Device in Patients Undergoing Left Atrial Appendage Closure: the SWISS-APERO Randomized Clinical Trial</td>
<td>1214</td>
<td>Dec 2025</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

CODING

The following codes for treatment and procedures applicable to this policy are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

CPT/HCPCS

33340 Percutaneous transcatheter closure of the left atrial appendage with endocardial implant, including fluoroscopy, transseptal puncture, catheter placement(s), left atrial angiography, left atrial appendage angiography, when performed, and radiological supervision and interpretation

ICD-10 Diagnoses

I48.0 Paroxysmal atrial fibrillation
I48.2 Chronic atrial fibrillation
I48.91 Unspecified atrial fibrillation
I63.30 Cerebral infarction due to thrombosis of unspecified cerebral artery
I63.311 Cerebral infarction due to thrombosis of right middle cerebral artery
I63.312 Cerebral infarction due to thrombosis of left middle cerebral artery
I63.313 Cerebral infarction due to thrombosis of bilateral middle cerebral arteries
I63.319 Cerebral infarction due to thrombosis of unspecified middle cerebral artery
I63.321 Cerebral infarction due to thrombosis of right anterior cerebral artery

Contains Public Information
I63.322 Cerebral infarction due to thrombosis of left anterior cerebral artery
I63.323 Cerebral infarction due to thrombosis of bilateral anterior cerebral arteries
I63.329 Cerebral infarction due to thrombosis of unspecified anterior cerebral artery
I63.331 Cerebral infarction due to thrombosis of right posterior cerebral artery
I63.332 Cerebral infarction due to thrombosis of left posterior cerebral artery
I63.333 Cerebral infarction due to thrombosis of bilateral posterior cerebral arteries
I63.339 Cerebral infarction due to thrombosis of unspecified posterior cerebral artery
I63.341 Cerebral infarction due to thrombosis of right cerebellar artery
I63.342 Cerebral infarction due to thrombosis of left cerebellar artery
I63.343 Cerebral infarction due to thrombosis of bilateral cerebellar arteries
I63.349 Cerebral infarction due to thrombosis of unspecified cerebellar artery
I63.39 Cerebral infarction due to thrombosis of other cerebral artery
I63.40 Cerebral infarction due to embolism of unspecified cerebral artery
I63.411 Cerebral infarction due to embolism of right middle cerebral artery
I63.412 Cerebral infarction due to embolism of left middle cerebral artery
I63.413 Cerebral infarction due to embolism of bilateral middle cerebral arteries
I63.419 Cerebral infarction due to embolism of unspecified middle cerebral artery
I63.421 Cerebral infarction due to embolism of right anterior cerebral artery
I63.422 Cerebral infarction due to embolism of left anterior cerebral artery
I63.423 Cerebral infarction due to embolism of bilateral anterior cerebral arteries
I63.429 Cerebral infarction due to embolism of unspecified anterior cerebral artery
I63.431 Cerebral infarction due to embolism of right posterior cerebral artery
I63.432 Cerebral infarction due to embolism of left posterior cerebral artery
I63.433 Cerebral infarction due to embolism of bilateral posterior cerebral arteries
I63.439 Cerebral infarction due to embolism of unspecified posterior cerebral artery
I63.441 Cerebral infarction due to embolism of right cerebellar artery
I63.442 Cerebral infarction due to embolism of left cerebellar artery
I63.443 Cerebral infarction due to embolism of bilateral cerebellar arteries
I63.449 Cerebral infarction due to embolism of unspecified cerebellar artery
I63.49 Cerebral infarction due to embolism of other cerebral artery
I63.50 Cerebral infarction due to unspecified occlusion or stenosis of unspecified cerebral artery
I63.511 Cerebral infarction due to unspecified occlusion or stenosis of right middle cerebral artery
I63.512 Cerebral infarction due to unspecified occlusion or stenosis of left middle cerebral artery
I63.513 Cerebral infarction due to unspecified occlusion or stenosis of bilateral middle cerebral arteries
I63.519 Cerebral infarction due to unspecified occlusion or stenosis of unspecified middle cerebral artery
I63.521 Cerebral infarction due to unspecified occlusion or stenosis of right anterior cerebral artery
I63.522 Cerebral infarction due to unspecified occlusion or stenosis of left anterior cerebral artery
I63.523 Cerebral infarction due to unspecified occlusion or stenosis of bilateral anterior cerebral arteries
I63.529 Cerebral infarction due to unspecified occlusion or stenosis of unspecified anterior cerebral artery
I63.531 Cerebral infarction due to unspecified occlusion or stenosis of right posterior cerebral artery
I63.532 Cerebral infarction due to unspecified occlusion or stenosis of left posterior cerebral artery
I63.533 Cerebral infarction due to unspecified occlusion or stenosis of bilateral posterior cerebral arteries
I63.539 Cerebral infarction due to unspecified occlusion or stenosis of unspecified posterior cerebral artery
I63.541 Cerebral infarction due to unspecified occlusion or stenosis of right cerebellar artery
I63.542 Cerebral infarction due to unspecified occlusion or stenosis of left cerebellar artery
I63.543 Cerebral infarction due to unspecified occlusion or stenosis of bilateral cerebellar arteries
I63.549 Cerebral infarction due to unspecified occlusion or stenosis of unspecified cerebellar artery
I63.59 Cerebral infarction due to unspecified occlusion or stenosis of other cerebral artery
I63.6 Cerebral infarction due to cerebral venous thrombosis, nonpyogenic
I63.81 Other cerebral infarction due to occlusion or stenosis of small artery
I63.89 Other cerebral infarction
I63.9 Cerebral infarction, unspecified
I66.01 Occlusion and stenosis of right middle cerebral artery
I66.02 Occlusion and stenosis of left middle cerebral artery
I66.03 Occlusion and stenosis of bilateral middle cerebral arteries
I66.09 Occlusion and stenosis of unspecified middle cerebral artery
I66.11 Occlusion and stenosis of right anterior cerebral artery
I66.12 Occlusion and stenosis of left anterior cerebral artery
I66.13 Occlusion and stenosis of bilateral anterior cerebral arteries
I66.19 Occlusion and stenosis of unspecified anterior cerebral artery
I66.21 Occlusion and stenosis of right posterior cerebral artery
I66.22 Occlusion and stenosis of left posterior cerebral artery
I66.23 Occlusion and stenosis of bilateral posterior cerebral arteries
I66.29 Occlusion and stenosis of unspecified posterior cerebral artery
I66.3 Occlusion and stenosis of cerebellar arteries
I66.8 Occlusion and stenosis of other cerebral arteries
I66.9 Occlusion and stenosis of unspecified cerebral artery

REVISIONS
12-20-2013 Policy added to the bcbks.com web site.
07-01-2016 Updated Description section.
 In Policy section:
 • Removed "The use of percutaneous left-atrial appendage closure devices for the prevention of stroke in atrial fibrillation is considered experimental / investigational."
- Added the following:
 A. The use of a device with U.S. Food and Drug Administration (FDA) approval for percutaneous left atrial appendage closure (e.g., the Watchman) may be considered medically necessary for the prevention of stroke in patients with atrial fibrillation when the following criteria are met:
 1. There is an increased risk of stroke and systemic embolism based on CHADS2 or CHA2DS2-VASc score and systemic anticoagulation therapy is recommended; AND
 2. The long-term risks of systemic anticoagulation outweigh the risks of the device implantation (see Policy Guidelines).
 B. The use of a device with FDA approval for percutaneous left atrial appendage closure (e.g., the Watchman) for stroke prevention in patients who do not meet the above criteria is considered experimental / investigational.
 C. The use of other percutaneous left atrial appendage closure devices, including but not limited to the Lariat, PLAATO, and Amplatzer devices, for stroke prevention in patients with atrial fibrillation is considered experimental / investigational.
- Added Policy Guidelines.

Updated Rationale section.

In Coding section:
- Updated CPT code 0281T nomenclature.
- Added ICD-10 codes.

Updated References section.

07-07-2016
- Updated Description section.
- Updated Rationale section.
- Updated References section.

10-01-2016
- In Coding section:
 - Added ICD-10 codes effective 10-01-2016: I63.313, I63.323, I63.333, I63.343, I63.413, 863.423, I63.433, I63.443, I63.513, I63.523, I63.533, I63.543

01-01-2017
- In Coding section:
 - Removed CPT code: 0281T (Termed code, effective December 31, 2016).

07-11-2017
- Updated Description section.
- Updated Rationale section.
- Updated References section.

10-01-2017
- In Coding section:
 - Revised nomenclature to ICD-10 codes: I63.323, I63.333, I63.513, I63.523, I63.533.

08-08-2018
- Updated Description section.

In Policy section:
- In Item A, added "nonvalvular" to read, "The use of a device with U.S. Food and Drug Administration (FDA) approval for percutaneous left atrial appendage closure (e.g., the Watchman) may be considered medically necessary for the prevention of stroke in patients with nonvalvular atrial fibrillation when the following criteria are met:"
- In Item C, removed "PLAATO" to read, "The use of other percutaneous left atrial appendage closure devices, including, but not limited to, the Lariat and Amplatzer devices, for stroke prevention in patients with atrial fibrillation is considered experimental / investigational."
- Updated Policy Guidelines.

Updated Rationale section.
Updated References section.

10-01-2018
In Coding section:
- Added ICD-10 codes: I63.81, I63.89.
- Removed ICD-10 code: I63.8.
- Revised ICD-10 codes: I63.333, I63.343.

06-19-2019
Updated Description section.
Updated Rationale section.
Updated References section.

REFERENCES

17. Baman, JJ, Mansour, MM, Heist, EE, Huang, DD, Biton, YY. Percutaneous left atrial appendage occlusion in the prevention of stroke in atrial fibrillation: a systematic review. Heart Fail Rev, 2018 Feb 18;23(2). PMID 29453694

Other References
1. BCBSKS Medical Consultant, Practicing Board Certified Thoracic Surgeon, November 2013.
2. Blue Cross Blue Shield of Kansas Cardiology Liaison Committee, May 2014; May 2018.