Medical Policy

Title: Surgical Treatment of Femoroacetabular Impingement

Professional
- Original Effective Date: September 26, 2013
- Revision Date(s): November 15, 2014; July 21, 2015; May 24, 2017; June 6, 2018; June 19, 2019; April 19, 2021
- Current Effective Date: May 24, 2017

Institutional
- Original Effective Date: September 26, 2013
- Revision Date(s): November 15, 2014; July 21, 2015; May 24, 2017; June 6, 2018; June 19, 2019; April 19, 2021
- Current Effective Date: May 24, 2017

State and Federal mandates and health plan member contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. To verify a member’s benefits, contact [Blue Cross and Blue Shield of Kansas Customer Service](https://www.bcbsks.com/customer-service).

The BCBSKS Medical Policies contained herein are for informational purposes and apply only to members who have health insurance through BCBSKS or who are covered by a self-insured group plan administered by BCBSKS. Medical Policy for FEP members is subject to FEP medical policy which may differ from BCBSKS Medical Policy.

The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents of Blue Cross and Blue Shield of Kansas and are solely responsible for diagnosis, treatment and medical advice.

If your patient is covered under a different Blue Cross and Blue Shield plan, please refer to the Medical Policies of that plan.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• Who are adults with asymptomatic femoroacetabular impingement</td>
<td>• Femoroacetabular impingement surgery</td>
<td>• Observation</td>
<td>• Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Functional outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Health status measures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Quality of life</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Change in disease status</td>
</tr>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• Who are adults with symptomatic femoroacetabular impingement</td>
<td>• Femoroacetabular impingement surgery</td>
<td>• Conservative management</td>
<td>• Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Functional outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Health status measures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Quality of life</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Change in disease status</td>
</tr>
</tbody>
</table>

Contains Public Information
DESCRIPTION

Femoroacetabular impingement (FAI) results from localized compression within the joint as a result of an anatomic mismatch between the head of the femur and the acetabulum. Symptoms of impingement typically occur in young to middle-aged adults before the onset of osteoarthritis but may be present in younger patients with developmental hip disorders. The objective of surgical treatment of FAI is to provide symptom relief and reduce further damage to the joint.

OBJECTIVE

The objective of this evidence review is to evaluate whether the use of surgical treatments (open surgery, arthroscopic surgery, mixed open/arthroscopic surgery) improves the net health outcome in individuals with femoroacetabular impingement.

BACKGROUND

Femoroacetabular Impingement

Femoroacetabular impingement arises from an anatomic mismatch between the head of the femur and the acetabulum, causing compression of the labrum or articular cartilage during flexion. The mismatch can arise from subtle morphologic alterations in the anatomy or orientation of the ball-and-socket components (e.g., a bony prominence at the head-neck junction or acetabular overcoverage), with articular cartilage damage initially occurring from abutment of the femoral neck against the acetabular rim, typically at the anterosuperior aspect of the acetabulum. Although hip joints can possess the morphologic features of femoroacetabular impingement without symptoms, femoroacetabular impingement may become pathologic with repetitive movement and/or increased force on the hip joint. High-demand activities may also result in pathologic impingement in hips with normal morphology.

Two types of impingement, cam, and pincer, may occur alone or, more frequently, together. Cam impingement is associated with an asymmetric or nonspherical contour of the head or neck of the femur jamming against the acetabulum, resulting in cartilage damage and delamination (detachment from the subchondral bone). Deformity of the head/neck junction that looks like a pistol-grip on radiographs is associated with damage to the anterosuperior area of the
acetabulum. Symptomatic cam impingement is found most frequently in young male athletes. Pincer impingement is associated with overcoverage of the acetabulum and pinching of the labrum, with pain more typically beginning in women of middle age. In cases of isolated pincer impingement, the damage may be limited to a narrow strip of the acetabular cartilage.

Epidemiologic and radiographic studies have found correlations between hip osteoarthritis and femoroacetabular impingement lesions, supporting the theory that prolonged contact between the anatomically mismatched acetabulum and femur may lead not only to cam and pincer lesions but also to further cartilage damage and subsequent joint deterioration. It is believed that osteoplasty of the impinging bone is needed to protect the cartilage from further damage and to preserve the natural joint. Therefore, if femoroacetabular impingement morphology is shown to be an etiology of osteoarthritis, a strategy to reduce the occurrence of idiopathic hip osteoarthritis could be early recognition and treatment of femoroacetabular impingement before cartilage damage and joint deterioration occurs.

An association between femoroacetabular impingement and athletic pubalgia, sometimes called sports hernia, has been proposed. Athletic pubalgia is an umbrella term for a large variety of musculoskeletal injuries involving attachments and/or soft tissue support structures of the pubis (see evidence review 7.01.142 on the surgical treatment of athletic pubalgia).

Treatment

A technique for hip dislocation with open osteochondroplasty that preserved the femoral blood supply was reported by Ganz. Visualization of the entire joint with this procedure led to the identification and acceptance of femoroacetabular impingement as an etiology of cartilage damage and the possibility of correcting the abnormal femoroacetabular morphology. Open osteochondroplasty of bony abnormalities and treatment of the symptomatic cartilage defect is considered the criterion standard for complex bony abnormalities. However, open osteochondroplasty is invasive, requiring transection of the greater trochanter (separation of the femoral head from the femoral shaft) and dislocation of the hip joint to provide full access to the femoral head and acetabulum. In addition to the general adverse events of open surgical procedures, open osteochondroplasty with dislocation has been associated with nonunion and neurologic and soft tissue lesions.

Less invasive hip arthroscopy and an arthroscopy-assisted mini-approach were developed by 2004. Arthroscopy requires specially designed instruments and is considered technically more difficult due to reduced visibility and limited access to the joint space. Advanced imaging techniques, including computed tomography and fluoroscopy, have been used to improve visualization of the 3-dimensional head/neck morphology during arthroscopy.

Femoroacetabular impingement can also be a source of hip pain and decreased hip internal rotation in the pediatric population. When nonoperative management of femoroacetabular impingement in children and adolescents is ineffective, surgical procedures may be indicated. Surgical techniques include arthroscopy, open hip dislocation, limited open with arthroscopy, and osteotomy.

Slipped Capital Femoral Epiphysis

Patients with slipped capital femoral epiphysis have a displaced femoral head in relation to the femoral neck within the confines of the acetabulum, which can result in hip pain, thigh pain, knee
pain, and the onset of a limp. Slipped capital femoral epiphysis occurs most frequently in children between the ages of 10 to 16. Upon reaching skeletal maturity patients diagnosed with slipped capital femoral epiphysis, 32% were found to have clinical signs of impingement. It is not uncommon for patients with slipped capital femoral epiphysis to develop premature osteoarthritis and require total hip arthroplasty within 20 years.

Treatment
The standard treatment for slipped capital femoral epiphysis is stabilization across the physis by in situ pinning. Alternative treatments proposed for pediatric patients with slipped capital femoral epiphysis related femoroacetabular impingement include osteoplasty without dislocation, or with the open dislocation technique described by Ganz. The Ganz technique (capital realignment with open dislocation) is technically demanding, with a steep learning curve and a high-risk of complications, including avascular necrosis. Therefore, early treatment to decrease impingement must be weighed against the increased risk of adverse events.

Regulatory Status
Surgery for treatment of femoroacetabular impingement is a procedure and, as such, is not subject to regulation by the U.S. Food and Drug Administration.
POLICY

A. Open or arthroscopic treatment of femoroacetabular impingement (FAI) may be **medically necessary** when **ALL** of the following conditions have been met:

1. **Age**
 a. Candidates should be skeletally mature with documented closure of growth plates.

2. **Symptoms**
 a. Moderate-to-severe hip pain worsened by flexion activities (e.g., squatting or prolonged sitting) that significantly limits activities; **AND**

 b. Unresponsive to conservative therapy for at least 3 months (including activity modifications, restriction of athletic pursuits, and avoidance of symptomatic motion); **AND**

 c. Positive impingement sign on clinical examination (pain elicited with 90° of flexion and internal rotation and adduction of the femur).

3. **Imaging**
 a. Morphology indicative of cam or pincer FAI (e.g., pistol-grip deformity, femoral head-neck offset with an alpha angle greater than 50°, a positive wall sign, acetabular retroversion [overcoverage with crossover sign]), coxa profunda or protrusion, or damage of the acetabular rim; **AND**

 b. High probability of a causal association between the FAI morphology and damage (e.g., a pistol-grip deformity with a tear of the acetabular labrum and articular cartilage damage in the anterosuperior quadrant); **AND**

 c. No evidence of advanced osteoarthritis, defined as Tonnis grade 2 or 3, or joint space of less than 2 mm; **AND**

 d. No evidence of severe (Outerbridge grade IV) chondral damage.

B. Treatment of FAI is considered **experimental / investigational** in all other situations.

Policy Guidelines

1. If FAI morphology is identified, patients should be advised not to play aggressive sports. No more frequent than annual follow-up with magnetic resonance arthrography may be indicated for FAI morphology to evaluate cartilage changes before damage becomes severe. It should be noted that current imaging techniques limit the early identification of cartilage defects, whereas delay in the surgical correction of bony abnormalities may lead to disease progression to the point at which joint preservation is no longer appropriate. Confirmation of subtle FAI morphology may require 3D CT. Some clinicians may also use local anesthetic injection into the joint to assist in confirming FAI pathology.

2. Treatment of FAI should be restricted to centers experienced in treating this condition and staffed by surgeons adequately trained in techniques addressing FAI. Because of the
differing benefits and risks of open and arthroscopic approaches, patients should make an informed choice between the procedures.

3. Some patients may require a revision if symptoms recur or persist. Published studies have indicated that all sources of impingement may not have been identified before surgery, and those that had been identified may not have been adequately treated. The risk of additional surgical procedure can be reduced by intraoperative assessment of impingement after bone debridement and reshaping.

RATIONALE
This evidence review has been updated regularly with searches of the PubMed database. The most recent literature update was performed through January 30, 2020.

Evidence reviews assess the clinical evidence to determine whether the use of technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life, and ability to function, including benefits and harms. Every clinical condition has specific outcomes that are important to patients and managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of technology, two domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

ADULTS WITH ASYMPTOMATIC FEMOROACETABULAR IMPINGEMENT

Clinical Context and Therapy Purpose
The purpose of femoroacetabular impingement surgery is to provide a treatment option that is an alternative to or an improvement on existing therapies, such as observation, in patients who are adults with asymptomatic femoroacetabular impingement.

The question addressed in this evidence review is: Does the use of surgical treatments (open surgery, arthroscopic surgery, mixed open/arthroscopic surgery) improve the net health outcome in individuals with asymptomatic femoroacetabular impingement?

The following PICO was used to select literature to inform this review.
Patients
The relevant population of interest is individuals who are adults with asymptomatic femoroacetabular impingement.

Femoroacetabular impingement is more prevalent in the athletic population. The true prevalence of femoroacetabular impingement is difficult to obtain as there is disagreement whether it should be assessed on the basis of radiographic or clinical findings suggestive of femoroacetabular impingement, as a large percentage of patients in both the athletic and general population may have radiographic findings indicative of femoroacetabular impingement, but remains clinically asymptomatic. Frank et al conducted a systematic review of 26 studies to determine the prevalence of femoroacetabular impingement in asymptomatic individuals (n=2114). The prevalence of cam-type deformity was 23.1% in the general population, compared with 54.8% in the athletic population.

Interventions
The therapy being considered is femoroacetabular impingement surgery. Femoroacetabular impingement results from localized compression in the joint due to an anatomic mismatch between the head of the femur and the acetabulum. Symptoms of impingement typically occur in young to middle-aged adults before the onset of osteoarthritis but may be present in younger patients with developmental hip disorders.

The objective of surgical treatment of femoroacetabular impingement is to provide symptom relief and reduce further joint damage.

Patients who are adults with asymptomatic femoroacetabular impingement are actively managed by orthopedic surgeons, physical therapists and primary care providers in an inpatient surgical setting followed by outpatient postoperative care.

Comparators
Comparators of interest include observation which is managed by a primary care provider in an outpatient clinical setting.

Outcomes
The general outcomes of interest are symptoms functional outcomes, health status measures, quality of life, and change in disease status.

The existing literature evaluating femoroacetabular impingement surgery as a treatment for patients who are adults with asymptomatic femoroacetabular impingement has varying lengths of follow up. At least one year of follow-up is desirable to assess outcomes.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:

a. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;

b. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.

c. To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
d. Studies with duplicative or overlapping populations were excluded.

Review of Evidence
Currently, there are no studies providing evidence on the efficacy of femoroacetabular impingement surgery for adults with asymptomatic femoroacetabular impingement morphology for the prevention of osteoarthritis. Indirect evidence consists of observational studies that demonstrate a relation between femoroacetabular impingement and osteoarthritis.

Observational Studies
Oner et al (2016) conducted a retrospective study to determine the prevalence of femoroacetabular impingement as an etiologic factor for osteoarthritis in the hip joint among patients who had undergone total hip arthroscopy (THA). Radiographs of 1,004 patients who had undergone total hip arthroscopy (THA) between 2005 and 2010 were reviewed by 3 authors. Intra- and interobserver consistencies were calculated. The predisposing etiologic factor leading to end-stage degenerative hip disease was undetermined in 26 of the radiographs. Among the remaining 978 patients, 99 patients were diagnosed with femoroacetabular impingement by all 3 reviewers, 83 with a cam-type femoroacetabular impingement, and 16 with pincer-type femoroacetabular impingement. Interobserver agreement was high, with a contingency coefficient between observers of 0.71 for the diagnosis of femoroacetabular impingement. A population-based cohort study by Thomas et al (2014) found that subclinical deformities of the hip, including cam-type femoroacetabular impingement, were significant predictors of radiographic evidence of osteoarthritis and total hip replacement in women. A cohort of 1,003 women underwent pelvis radiographs at years 2 and 20. At 20 years, blinded radiographic analysis was available for 670 (46%) hips, of which 70 (11%) showed osteoarthritis. For total hip replacement (see evidence review 7.01.80), data at the 20-year assessment were available for 1,455 (99%) hips, of which 40 (3%) had undergone replacement. Pincer-type femoroacetabular impingement at year two was not significantly associated with radiographic evidence of osteoarthritis. Cam-type femoroacetabular impingement at year two was significantly associated with the development of radiographic osteoarthritis and total hip replacement. Each degree increased in the alpha angle above 65° was associated with an increased risk of 5% for radiographic evidence of osteoarthritis and 4% for total hip replacement. These findings were limited by the low rate of participants having both baseline and follow-up radiographs.

Ganz and colleagues began a cross-sectional population-based natural history cohort in 2005 that included over 1,000 young men to determine whether morphologic alterations are associated with an increased rate of early osteoarthritis. Reichenbach et al (2011) reported on 1080 asymptomatic young men in the Sumiswald Cohort had undergone clinical examination and completed the Western Ontario and McMaster Universities Osteoarthritis Index and the EuroQoL health-related quality of life questionnaire. Of these, 244 randomly selected subjects (mean age, 19.9 years) underwent magnetic resonance imaging to evaluate cam-type deformities, labral lesions, cartilage thickness, and impingement pits. Definite cam-type deformities were detected in 67 (27%) asymptomatic men. Logistic regression models, adjusted for age and body mass index, found for patients with cam-type deformities odds ratios of 2.77 for labral lesions, 2.91 for impingement pits, and 2.45 for labral deformities. Cartilage thickness was -0.19 mm lower in subjects with cam-type deformities.
Gosvig et al (2010) published findings from a cross-sectional radiographic and questionnaire database of 4,151 individuals from the Copenhagen Osteoarthritis study.6 The study group consisted of 1,332 men (mean age, 60.0 years; range, 22-90 years), and 2,288 women (mean age, 60.8 years; range, 21-90 years). The hips were categorized as being without malformations or as having an abnormality consisting of a deep acetabular socket, a pistol-grip deformity, or a combination of the two based on radiographic criteria. Male and female prevalence of hip joint malformations was 71% and 36.6%, respectively. The prevalence of hip osteoarthritis, radiographically defined, was 9.5% in men and 11.2% in women. A deep acetabular socket or a pistol-grip deformity was a significant risk factor in the development of hip osteoarthritis (relative risk, 2.4 and 2.2, respectively).

A study by Takeyama et al (2009) from Asia reviewed records of 817 patients (946 hips) who underwent primary surgery for osteoarthritis or other hip diseases to determine the prevalence of femoroacetabular impingement.7 Most (73%) patients were diagnosed with osteoarthritis secondary to developmental hip dysplasia. Only 17 (1.8%) patients were considered to have had primary osteoarthritis. Of these, 6 patients (average age, 63 years; range, 32-79 years) were determined to have femoroacetabular impingement from preoperative radiographs, resulting in a possible etiology of femoroacetabular impingement for 0.6% of the total population undergoing surgery for osteoarthritis and 35% in the population with primary osteoarthritis.

Bardakos and Villar (2009) retrospectively examined 43 patients (43 hips) younger than 55 years of age with a history of symptomatic idiopathic arthritis, who exhibited pistol-grip deformity of the femur and mild-to-moderate osteoarthritis (Tonnis grade 1 or 2).8 Radiographs showed progression of osteoarthritis in two-thirds of the patients, with 12 receiving hip replacement or resurfacing after more than 10 years. Logistic regression analysis showed the medial proximal femoral angle and the posterior wall sign as significant independent predictors for progression of osteoarthritis. A reduction of 1° in the medial proximal angle increased the odds of osteoarthritis progression by 21 times, while hip osteoarthritis with a positive posterior wall sign was 10 times more likely to progress than a hip that had a negative posterior wall sign. Of note, one-third of the patients with a pistol-grip deformity did not progress rapidly within the assessment period.

Kim et al (2007) reviewed outcomes for 43 patients (mean age, 40 years; range, 18-68 years) with labral tears and early osteoarthritis (Tonnis grade 0 to I; average Japanese Orthopedic Association scores, <1) and symptoms lasting 3 months or more who had been treated with débridement.9 (The Japanese Orthopedic Association scale ranges from 0 [severe pain] to 3 [no pain].) At an average 50-month follow-up (range, 12-96 months), 74% of patients reported symptom improvement. Blinded evaluation of preoperative radiographs and magnetic resonance arthrograms indicated 42% of patients had femoroacetabular impingement. Patients treated only with débridement were less likely to improve if early-stage osteoarthritis or femoroacetabular impingement was present at the time of surgery (Japanese Orthopedic Association score, 1.67). Patients without either femoroacetabular impingement or osteoarthritis scored 2.6 while patients with femoroacetabular impingement scored 1.83.

A frequently cited paper by Beck et al (2005) with Ganz as coauthor has described the potential relation between hip morphology and acetabular damage.10 In this report, 26 patients with pure pistol-grip deformity and 16 patients with isolated coxa profunda were identified from 302 hips treated for intra-articular pathology between 1996 and 2001. Among the 26 hips with isolated cam impingement on preoperative radiographs, all showed acetabular cartilage damage in the
anterosuperior area of the acetabulum with separation between the acetabular cartilage and the labrum. In the 16 hips with isolated pincer impingement, the damage was located more circumferentially, usually including only a narrow strip of the acetabular cartilage. The report illustrated that, in carefully selected patients with early-stage osteoarthritis and well-defined hip configurations, a strong association exists between specific hip morphology and the pattern of cartilage damage.

Tanzer and Noizeux (2004) reported on 3 separate populations when investigating anterior hip impingement as a common etiology of hip disorders. The 3 populations of interest were patients who had undergone hip arthroscopy for labral tears (n=38), patients who had undergone cheilectomy for anterior femoroacetabular impingement (n=10), and patients who had total hip arthroscopy (THA) due to idiopathic arthritis (n=200). Radiographic findings showed a pistol-grip deformity in 97% of the patients with labral tears and 100% of the patients with idiopathic arthritis.

Section Summary: Adults With Asymptomatic Femoroacetabular impingement

There is no direct evidence that performing femoroacetabular impingement surgery on asymptomatic adults with femoroacetabular impingement morphology will prevent the development of osteoarthritis. There is indirect evidence from retrospective studies that patients with cam-type impingement related to a pistol-grip deformity will experience labral damage, which can lead to the subsequent development of osteoarthritis.

ADULTS WITH SYMPTOMATIC FEMOROACETABULAR IMPINGEMENT

Clinical Context and Therapy Purpose

The purpose of femoroacetabular impingement surgery is to provide a treatment option that is an alternative to or an improvement on existing therapies, such as conservative management, in patients who are adults with symptomatic femoroacetabular impingement.

The question addressed in this evidence review is: Does the use of surgical treatments (open surgery, arthroscopic surgery, mixed open/arthroscopic surgery) improve the net health outcome in individuals with symptomatic femoroacetabular impingement?

The following PICO was used to select literature to inform this review.

Patients

The relevant population of interest is individuals who are adults with symptomatic femoroacetabular impingement. Symptoms of impingement typically occur in young to middle-aged adults before the onset of osteoarthritis but may be present in younger patients with developmental hip disorders.

Interventions

The therapy being considered is femoroacetabular impingement surgery. Femoroacetabular impingement results from localized compression in the joint due to an anatomic mismatch between the head of the femur and the acetabulum. The objective of surgical treatment of femoroacetabular impingement is to provide symptom relief and reduce further joint damage.
Comparators
Comparators of interest include conservative management. Conservative management includes activity changes, non-steroidal anti-inflammatory medications, and physical therapy.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, health status measures, quality of life, and change in disease status.

The existing literature evaluating femoroacetabular impingement surgery as a treatment for patients who are adults with asymptomatic femoroacetabular impingement has varying lengths of follow up. At least one year of follow-up is desirable to assess outcomes.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:

a. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
b. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
c. To assess longer-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
d. Studies with duplicative or overlapping populations were excluded.

Review of Evidence
Surgical options for the treatment of adults with symptomatic femoroacetabular impingement include: open, arthroscopic, mini-open, and mixed open/arthroscopic. The evidence for surgical treatment of femoroacetabular impingement consists of systematic reviews of RCTs, nonrandomized comparative studies and observational studies.

A systematic review and meta-analysis by Reiman et al (2018) evaluated surgery for the treatment of femoroacetabular impingement among athletes as reported in 35 studies (1634 athletes; 1828 hips). Evidence was graded limited to moderate strength. Athletes were reported to return to sport at preinjury level post-intervention at a rate of only 74% (95% CI, 67% to 81%). The mean follow-up post-surgery was 28.1 ± 15.5 months. Professional athletes returned to sport at a higher level than collegiate athletes (p=0.0002). It is difficult to assess effects of surgery on athletic performance as only 14% of studies reported on athletic performance before and after surgery.

A Cochrane review by Wall et al (2014) evaluated surgery for the treatment of femoroacetabular impingement, conducting a literature search for randomized and quasi-randomized trials assessing surgical intervention compared with placebo treatment, nonoperative treatment, or no treatment in adults with femoroacetabular impingement. No studies met these inclusion criteria. Four ongoing studies were identified at the time of publication (see NCT01893034 and NCT01623843 in the Ongoing and Unpublished Clinical Trials section).

A systematic review by Harris et al (2013) evaluating the treatment of femoroacetabular impingement included literature through April 2013, identifying 29 studies (total n=2369 patients): 83% had level IV evidence (case series), 14% had level III (cohort), and 3.4% had level I (RCT). An arthroscopic approach was used in 59% of studies. Study interventions
included nonoperative treatment, arthroscopy, surgical open dislocation, mixed open/arthroscopic, and mini-open. Both Nonarthritic Hip Score and modified Harris Hip Score values improved significantly, regardless of the surgical procedure compared with nonsurgical management. Differences between surgical techniques could not be assessed due to heterogeneity across surgical groups and inconsistent outcome measures.

Open Surgery
A systematic review by Bedi et al (2008) evaluated the management of labral tears and femoroacetabular impingement.\(^{15}\) Seven of the 19 studies assessed were case series of patients with femoroacetabular impingement treated with open hip dislocation. Several of these studies are described next.

Espinosa et al (2006) compared the effect of reattaching \((n=35)\) or removing \((n=25)\) the labrum during treatment for femoroacetabular impingement.\(^{16}\) Patients were 20 to 40 years of age and had no prior surgery; all had preoperative evidence of acetabular damage. Independent evaluations at two-year follow-up indicated improved Merle d’Aubigné scores for both groups. The study also reported a reduction in osteoarthritis progression.

Peters and Erickson (2006) reported on 29 patients \((30 \text{ hips})\) in a prospective study with minimum 2-year follow-up.\(^{17}\) The specific diagnoses were primary femoroacetabular impingement in 25 patients \((26 \text{ hips})\), Legg-Calve-Perthes disease \((n=3)\), and slipped capital femoral epiphysis \((\text{slipped capital femoral epiphysis}; n=1)\). The average age of the patients was 31 years \((\text{range}, 16-51 \text{ years})\). Twenty-nine of the 30 hips had cam-type impingement \((n=14)\) or mixed cam and pincer-type impingement \((n=15)\). The Harris Hip Score improved from 70 at baseline to 87 at an average 32-month follow-up. No progression to osteoarthritis was observed in 68% of patients. There was nonunion in 8 \((27\%)\) hips; 5 \((17\%)\) hips were expected to convert to THA due to progressive pain, and 4 \((13\%)\) had progressed to osteoarthritis. Radiographic signs of progression of osteoarthritis and clinical failure requiring conversion to THA were seen only in patients with severe damage to the acetabular articular cartilage.

Beck et al (2004) reported on 19 of 22 patients \((\text{average age}, 36 \text{ years}; \text{range}, 21-52 \text{ years})\) with confirmed clinical, radiographic, and magnetic resonance arthrographic diagnosis of femoroacetabular impingement, treated with surgical dislocation of the hip.\(^{18}\) Follow-up duration was at least four years. All had labral damage, and 18 had acetabular damage. Using the Merle d’Aubigné hip score, 13 of the hips were rated excellent to good and pain scores improved from 2.9 to 5.1. By the 4- to 5-year follow-up, 5 \((26\%)\) patients had undergone THA, due to cartilage damage.

Arthroscopic Surgery
The evidence on arthroscopic surgery for femoroacetabular impingement consists of a systematic review of observational studies, one multicenter RCT, one additional RCT, and stand-alone observational studies. Systematic reviews and RCTs are discussed below.

Systematic Reviews
Dwyer et al (2020) published a systematic review and meta-analysis comparing efficacy and outcomes of patients with femoroacetabular impingement treated with hip arthroscopy vs physical therapy alone.\(^{19}\) Reviewer identified 3 RCTs that included 650 patients \((323 \text{ randomized to surgery}; 327 \text{ randomized to physical therapy})\) with a follow-up rate of 90% and mean duration
of 11.5 months. Patients treated with arthroscopic surgery had improved scores on the International Hip Outcome Tool 33 compared with the nonoperative group (standardized mean difference, 3.46; 95% CI, 0.07 to 6.86; p<0.05). The degree of statistical heterogeneity for this result was low (I² = 41%; p=0.18). Pooled analyses of other outcome measures were conducted due to reporting in 2 or less studies.

Minkara et al (2018) published a systematic review and meta-analysis analyzing risk factors and outcomes after patients with femoroacetabular impingement had undergone hip arthroscopy.20. Reviewers identified 29 relevant articles that included 1,911 patients (1,981 hips). Reviewers conducted a meta-analysis assessing return to play, revision rate, surgical and nonsurgical complications, change in α-angle, intraoperative bone resection, and patient-reported outcome measures after hip arthroscopy in femoroacetabular impingement. However, all but two studies (one RCT, one prospective cohort) in the meta-analysis were case series. Reviewers also sought to identify risk factors associated with intervention success and/or failure. The data on reoperation and complication rates are most relevant. The cumulative risk of reoperation after hip arthroscopy, including revision surgery or subsequent THA, was 5.5% (95% confidence interval [CI], 3.6% to 7.5%). For patients requiring a secondary procedure, 77% underwent THA, and 13% required revision arthroscopy. A single study was the source for 19% of patients requiring a second procedure, which assessed hip arthroscopy exclusively among patients who were 50 years of age and older (mean, 57 years; range, 50-77 years). The risk of clinically reported complications was 1.7% (95% CI, 0.9% to 2.5%) The most frequent complication was heterotopic ossification, followed by transient neurapraxia, typically of the lateral femoral cutaneous nerve and sciatic nerve.

Kierkegaard et al (2017) published a systematic review and meta-analysis of patients with femoroacetabular impingement who had undergone hip arthroscopy.21. Outcomes were pain, activities of daily living (ADLs), and sports function. Databases were searched through September 2015. Nineteen studies were included in the meta-analysis (15 case series, 3 cohorts, 1 RCT). The RCT by Krych et al (2013) is described in the next section.22 The total number of patients included in the 19 studies was 2322 (mean age, 36 years; range, 18-57 years) and 42% were women. Weighted mean differences between pre- and postoperative outcomes were evaluated in the meta-analysis. Detectable pain reduction was achieved in less than three months and maintained through 5 years. Improved activities of daily living (ADLs) were evident between 3 and 6 months and maintained through at least three years of follow-up. Sports function improvements were detected between 6 and 12 months after arthroscopy and were maintained through follow-up over several years. Patients who received femoroacetabular impingement continued to have some pain post surgery.

Randomized Controlled Trials
Palmer et al (2019) compared arthroscopic hip surgery with physiotherapy and activity modification for improving patient reported outcome measures in patients with symptomatic femoroacetabular impingement.23. In this study, 222 participants aged 18 to 60 years with symptomatic femoroacetabular impingement confirmed clinically and with imaging (radiography or magnetic resonance imaging) were randomized (1:1) to receive arthroscopic hip surgery (n=112) or a program of physiotherapy and activity modification (n=110). Exclusion criteria included previous surgery, completion of a physiotherapy targeting femoroacetabular impingement within the preceding 12 months, established osteoarthritis (Kellgren-Lawrence grade ≥2), and hip dysplasia (center-edge angle <20 degrees). The primary outcome measure
was the Hip Outcome Score activities of daily living (ADL) at 8 months post-randomization, with a minimum clinically important difference between groups of nine points. At 8 months post-randomization, data were available for 100 patients in the arthroscopic hip surgery group (89%) and 88 patients in the physiotherapy program group (80%). Mean Hip Outcome Score ADL was 78.4 (95% CI 74.4 to 82.3) for patients randomized to arthroscopic hip surgery and 69.2 (65.2 to 73.3) for patients randomized to the physiotherapy group. After adjusting for baseline Hip Outcome Score ADL, age, sex, and study site, the mean Hip Outcome Score ADL was 10.0 points higher (6.4 to 13.6) in the arthroscopic hip surgery group compared with the physiotherapy group (P<0.001). No serious adverse events were reported in either group.

In a multicenter RCT, Griffin et al (2018), aimed to compare the clinical effectiveness of hip arthroscopy with best conservative care.24, The trial was assessor-blinded, conducted at 23 National Health Service hospitals in the United Kingdom, and enrolled patients presenting to these hospitals with femoroacetabular impingement syndrome. Patients over 16 years of age were included and were randomly allocated 1:1 to receive hip arthroscopy or personalized hip therapy (a program consisting of conservative care). Between July 2012 and July 2016, 348 patients were randomized to receive the intervention (171) or control (177) treatments. Follow-up at the primary outcome assessment was 92% (319/348) and at 12 months after randomization, mean International Hip Outcome Tool 33 scores improved in the intervention group from 39.2 (standard deviation 20.9) to 58.8 (27.2) and scores improved from 35.6 (standard deviation 18.2) to 49.7 (25.5) in the personalized hip therapy group. The mean difference in the primary analysis in the International Hip Outcome Tool-33 scores (adjusted for multiple factors) was 6.8 (95% CI, 1.7-12.0) in favor of the intervention (p=.0093). In terms of adverse events, 7 serious adverse events were reported and 5 of these (83%) were in the intervention group. There were no deaths. The intervention led to a greater improvement than the control and the difference was significant.

An RCT comparing arthroscopic labral repair with labral debridement was reported by Krych et al (2013).22, This nonblinded RCT included 36 females with pincer-type or combined-type femoroacetabular impingement. At a mean 32-month follow-up (range, 12-48 months), both treatment groups showed significant improvements in the Hip Outcome Score vs baseline. Compared with the débridement group, the arthroscopic repair group had better outcomes on the Hip Outcome Score ADLs scale (91.2 vs 80.9) and Hip Outcome Score sports scale (88.7 vs 76.3). Most patients in the arthroscopic repair group also rated their hip function as normal or nearly normal (94% vs 78%).

OPEN SURGERY VERSUS ARTHROSCOPIC SURGERY

Systematic Reviews
Zhang et al (2016) published a systematic review of studies comparing the efficacy and safety of hip arthroscopy with open surgical dislocation for the treatment of femoroacetabular impingement.25, Five comparative studies published through August 2016 were included, evaluating a total of 352 hips. All studies were considered good or high quality based on the Newcastle-Ottawa Scale. Length of follow-up among the studies ranged from 12 to 25 months. At the 3 month follow-up, patients undergoing open dislocation experienced significant improvements in alpha angle (-4.45; 95% CI, -8.22 to -0.67) compared with patients undergoing arthroscopy, while patients undergoing arthroscopy reported significantly better Nonarthritic Hip Score (16.58; 95% CI, 9.54 to 23.61) compared with patients undergoing open dislocation. At 12
month follow-up, Nonarthritic Hip Score remained significantly better in the arthroscopy group, though the modified Harris Hip Score and Hip Outcome Score scales for ADLs and sports were equivalent between groups. Complications were also similar between groups, though reoperation rates were significantly lower in patients undergoing arthroscopy (relative risk, 0.4; 95% CI, 0.17 to 0.95).

Nwachukwu et al (2016) published a systematic review and meta-analysis comparing open with arthroscopic surgical techniques for the treatment of femoroacetabular impingement.26 The literature search included studies published through October 2014, which had a mean follow-up of at least 3 years. Sixteen studies met inclusion criteria - nine open surgical hip dislocation studies and seven hip arthroscopy studies. Pooled cohort analyses were conducted on data from 600 hips with a mean follow-up of 58 months from the open surgery studies and 1,484 hips with a mean follow-up of 51 months from the arthroscopy studies. Conversion to THA was the outcome endpoint, with an overall survival rate of 93% for patients undergoing open surgery and 90.5% for patients undergoing arthroscopy (p=0.06). Scores on the 12-Item Short Form Health Survey were significantly better among patients undergoing arthroscopy. Direct comparisons of other outcomes were limited by outcome instrument heterogeneity. Both surgical techniques demonstrated favorable outcomes using their respective measuring systems.

Several other systematic reviews comparing open with arthroscopic surgery for femoroacetabular impingement have been identified.27,28,29, Matsuda et al (2011) included 18 level III or IV studies (controlled cohort or case series) with a minimum 1-year follow-up.27 Selected were 6 studies on open surgical dislocation, 4 on mini-open procedures, and 8 arthroscopic studies. All 3 approaches were effective in reducing pain and improving function in short-term to mid-term studies. Open dislocation surgery had a comparatively higher major complication rate primarily because of trochanteric osteotomy-related issues. The mini-open method showed comparable efficacy but significant incidence of iatrogenic injury to the lateral femoral cutaneous nerve. Botser et al (2011) included 26 level II to IV articles totaling 1,462 hips in 1,409 patients.28 Of these, 900 hips were treated arthroscopically, 304 with the open dislocation method, and 258 by the mini-open method. Mean time from onset of symptoms to surgery was 28 months. Overall complication rates were 1.7% for the arthroscopic group, 9.2% for the open surgical dislocation group, and 16% for the combined approach group.

Observational Studies

A direct comparison of arthroscopic and open treatment of femoroacetabular impingement was reported by Zingg et al (2013).30 Of 200 patients with femoroacetabular impingement invited to participate in this prospective study, 10 patients agreed to be randomized to arthroscopy or to open surgical hip dislocation, and 28 patients agreed to participate if permitted to select their preferred treatment. The open and arthroscopic groups were generally comparable at baseline. Arthroscopic treatment of femoroacetabular impingement resulted in a shorter hospital stay (3 days vs 5 days) and less time off work. Harris Hip Score was improved with arthroscopy compared with open treatment at 6 weeks, 3 months, and 12 months. Overall, pain scores (Western Ontario and McMaster Universities Osteoarthritis Index, Visual Analog Scale) were lower with arthroscopy, with statistically significant results for about half of the time points. Compared with the open surgical approach, arthroscopy resulted in morphologic overcorrections at the head-neck-junction.
Domb et al (2013) reported on a matched-pair comparison of open and arthroscopic treatment of femoroacetabular impingement.31 Patients chose their treatment approach after discussion of the advantages and disadvantages of each approach. Ten patients who chose the open procedure were matched with 20 patients from a larger cohort of 785 patients who underwent arthroscopic treatment of femoroacetabular impingement during the same period. Patients were matched for age, sex, femoroacetabular impingement diagnosis, and worker’s compensation status. The two groups had similar preoperative scores, and both groups showed significant improvements postoperatively. At 2-year follow-up, improvements in Hip Outcome Score sports scale (42.8 vs 23.5) and Nonarthritic Hip Score (94.2 vs 85.7) were significantly greater in the arthroscopic group. There was no significant difference between groups in the Harris Hip Score, Hip Outcome Score ADLs scale, or Visual Analog Scale pain scores.

Mini-Open and Mixed Open/Arthroscopic Approaches

The evidence for mixed-open and open/arthroscopic approaches for the treatment of femoroacetabular impingement consists of observational studies. This technique permits direct visualization of the anterior femoral head-neck junction without dislocation.

Observational Studies

Wu et al (2019) reported on a study of anterolateral mini-open and arthroscopic osteochondroplasty in the treatment of cam-type femoroacetabular impingement (36 patients; 39 hips).32 The mean Harris Hip Score significantly improved from 61.1 to 84.2 (\textit{p}<0.01). Due to progression of hip osteoarthritis, 9 hips (23\%) underwent total hip arthroplasty (THA) at a mean of 22 months. A survival analysis with the end point of conversion to THA or any revision surgery indicated a 74.9\% rate for hip preservation at 5-years.

A study of the mini-open surgical technique performed on 118 patients with femoroacetabular impingement was described by Chiron et al (2012).33 Fifty-eight percent had cam-type impingement, and 42\% had mixed-type impingement. Average follow-up was 2.2 years. Nonarthritic Hip Score, internal rotation, and alpha angles significantly improved following surgery. Eight revisions were performed, two patients experienced residual pain and eventually underwent THA, and two progressed rapidly to osteoarthritis.

A mixed open/arthroscopic approach for the treatment of femoroacetabular impingement was reported by Laude et al (2009) for 97 patients (100 hips).34 The average age of patients was 33 years (range, 16-56 years). Ninety-one (94\%) were available for follow-up at an average 58 months (range, 29-104 months). Scores on the Nonarthritic Hip Score improved from 55 at baseline to 84 at the last follow-up. One patient had a femoral neck fracture, 3 weeks postoperatively, and 13 (14\%) required revision due to persistent pain. Eleven (12\%) hips required THA at a mean of 40 months (range, 5-75 months). The best results were observed in patients younger than 40 years with Tonnis grade 0.

Section Summary: Adults With Symptomatic Femoroacetabular Impingement

The evidence for the use of open dislocation for the treatment of adults with femoroacetabular impingement consists of systematic reviews of observational studies. The evidence for the use of arthroscopy to treat adults with femoroacetabular impingement consists of systematic reviews of observational studies, one non-blinded RCT and one multicenter RCT with assessor-blinding. Comparisons of open dislocation and arthroscopy have shown that both procedures successfully reduce pain and improve functional outcomes, with arthroscopy showing more favorable...
satisfaction ratings. Although the evidence is mostly observational, cumulatively, the studies have reported on thousands of patients and outcomes have been positive.

ADOLESCENTS AND CHILDREN WITH SYMPTOMATIC FEMOROACETABULAR IMPINGEMENT

Clinical Context and Therapy Purpose
The purpose of femoroacetabular impingement surgery is to provide a treatment option that is an alternative to or an improvement on existing therapies, such as conservative management, in patients who are children ≤15 years of age with symptomatic femoroacetabular impingement.

The question addressed in this evidence review is: Does the use of surgical treatments (open surgery, arthroscopic surgery, mixed open/arthroscopic surgery) improve the net health outcome in children ≤15 years of age with symptomatic femoroacetabular impingement.

The following PICO was used to select literature to inform this review.

Patients
The relevant population of interest is individuals who are children ≤15 years of age with symptomatic femoroacetabular impingement. Symptoms of impingement typically occur in young to middle-aged adults before the onset of osteoarthritis but may be present in younger patients with developmental hip disorders.

Interventions
The therapy being considered is femoroacetabular impingement surgery. Femoroacetabular impingement results from localized compression in the joint due to an anatomic mismatch between the head of the femur and the acetabulum. The objective of surgical treatment of femoroacetabular impingement is to provide symptom relief and reduce further joint damage.

Patients who are children ≤15 years of age with symptomatic femoroacetabular impingement are actively managed by orthopedic surgeons, physical therapists and primary care providers in an inpatient surgical setting in addition to an outpatient clinical setting following surgery.

Comparators
Comparators of interest include conservative management. Conservative management includes activity changes, non-steroidal anti-inflammatory medications, and physical therapy. Conservative management is managed by physical therapists and primary care providers in an outpatient clinical setting.

Outcomes
The general outcomes of interest are symptoms functional outcomes, health status measures, quality of life, and change in disease status.

The existing literature evaluating femoroacetabular impingement surgery as a treatment for patients who are children ≤15 years of age with symptomatic femoroacetabular impingement has varying lengths of follow up, ranging from 2 to 5 years. At least one year of follow-up is desirable to assess outcomes.
Study Selection Criteria
Methodologically credible studies were selected using the following principles:

a. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;

b. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.

c. To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.

d. Studies with duplicative or overlapping populations were excluded.

Review of Evidence
The evidence for the surgical management of adolescents and children with symptomatic femoroacetabular impingement consists of a systematic review of observational studies, a systematic review of case series as well as two case series published after one of the systematic reviews. The systematic reviews, a case series in one of the systematic reviews, and case series published after the systematic review are described below.

Systematic Reviews
Oduwole et al (2017) reviewed 15 case series identified in a literature search from 2005 to 2016 that reported on the efficacy of surgical management in patients with femoroacetabular impingement secondary to slipped capital femoral epiphysis.35 A total of 261 patients (266 hips) underwent both arthroscopic and open procedures (arthroscopic osteochondroplasty, 85 patients [88 hips]; surgical hip dislocation, 131 patients [133 hips; open osteotomy, 45 patients [45 hips]). Mean alpha angle corrections observed for arthroscopy were 32.14°; for surgical hip dislocation, 41.45°; and for open osteotomy, 6.0° (p<0.05). Surgical hip dislocation resulted in the most improved correction of the alpha angle.

A systematic review by de Sa et al (2015) conducted a literature search through April 2014 and identified 6 case series and 2 conference abstracts (total n=388 children and adolescents) on surgical treatment for femoroacetabular impingement.36 The mean number of hips per study was 54 (range, 17-108). Meta-analysis could not be performed due to the inconsistency of outcome measures across studies. Patients’ ages ranged from 11 to 19.9 years. The main indication for surgery was confirmed diagnosis of femoroacetabular impingement, with persistent pain despite nonoperative interventions. Most patients were treated with hip arthroscopy (81% arthroscopic, 19% open). Mean follow-up was 23.4 months. All studies reported significant reductions in pain and improvements function. Satisfaction rates were 84% to 100% for arthroscopy and 79% for open dislocation. There were no reports of iatrogenic femoral neck fracture, instability/dislocation, acute slipped capital femoral epiphysis, avascular necrosis, premature physeal closure, and proximal femoral growth arrest.

Observational Studies
Guindani et al (2017) published results from patients less than 18 years of age who were retrospectively identified as having undergone surgical dislocation for several indications at a single institution.37 Among the 51 patients (53 hips) in the study, 18 (34%) hips had a diagnosis of femoroacetabular impingement. Patients with femoroacetabular impingement reported significant improvements in the following pre- and post-measurements: modified Harris Hip Score, Nonarthritic Hip Score, and 12-Item Short Form Health Survey. No significant
improvements were found in sphericity deviation score or on alpha angles (both anteroposterior and Lauenstein views).

Nwachukwu et al (2017) reviewed an institutional hip preservation registry of patients with femoroacetabular impingement who underwent hip arthroscopy.38 The authors sought to define the minimal clinically important difference and the substantial clinical benefit for adolescents undergoing hip arthroscopy. Data from 47 adolescents (68.1% female; mean age, 16.5 years) were obtained on the patients’ modified Harris Hip Score, the Hip Outcome Score, and the international Hip Outcome Tool. Overall adolescent patients reported a minimal clinically important difference for the various patient-related outcomes but not substantial clinical benefit. The authors discussed the potential limitations of patient-related outcomes for adolescents compared with adults. They noted that adolescents might have higher expectations and greater physical activity demands that influence their scores.

Included in the de Sa et al (2015) systematic review was a multicenter prospective study by Tran et al (2013) who assessed arthroscopic treatment for cam-type femoroacetabular impingement in 34 skeletally immature adolescents with open growth plates (41 hips).39 At a mean follow-up of 14 months (range, 1-2 years), modified Harris Hip Score improved from 77.39 to 94.15 and Nonarthritic Hip Score improved from 76.34 to 93.18. Return to full sporting activity was reported by 78% of patients. No complications (e.g., avascular necrosis, slipped capital femoral epiphysis, fracture, growth plate arrest) were observed.

Section Summary: Adolescents and Children With Symptomatic Femoroacetabular Impingement

The evidence consists of a systematic review of observational studies and another of case series as well as 2 case series. All studies reported favorable outcomes in pain reduction and functional improvements but all had relatively small sample sizes and lacked sufficiently long follow-up. No serious adverse events were reported.

CHILDREN WITH SLIPPED CAPITAL FEMORAL EPIPHYSIS-ASSOCIATED FEMOROACETABULAR IMPINGEMENT

Clinical Context and Therapy Purpose

The purpose of femoroacetabular impingement surgery is to provide a treatment option that is an alternative to or an improvement on existing therapies, such as surgical repair of slipped capital femoral epiphysis alone, in patients who are children ≤15 years of age with slipped capital femoral epiphysis associated femoroacetabular impingement.

The question addressed in this evidence review is: Does the use of surgical treatments (open surgery, arthroscopic surgery, mixed open/arthroscopic surgery) improve the net health outcome in children ≤15 years of age with slipped capital femoral epiphysis associated femoroacetabular impingement?

The following PICO was used to select literature to inform this review.

Patients

The relevant population of interest is individuals who are children ≤15 years of age with slipped capital femoral epiphysis associated femoroacetabular impingement.
Interventions
The therapy being considered is femoroacetabular impingement surgery. Femoroacetabular impingement results from localized compression in the joint due to an anatomic mismatch between the head of the femur and the acetabulum. Symptoms of impingement typically occur in young to middle-aged adults before the onset of osteoarthritis but may be present in younger patients with developmental hip disorders. The objective of surgical treatment of femoroacetabular impingement is to provide symptom relief and reduce further joint damage.

Patients who are children ≤15 years of age with slipped capital femoral epiphysis associated femoroacetabular impingement are actively managed by orthopedic surgeons, physical therapists and primary care providers in an inpatient surgical setting in addition to an outpatient clinical setting following surgery.

Comparators
Comparators of interest include surgical repair of slipped capital femoral epiphysis alone.

Outcomes
The general outcomes of interest are symptoms functional outcomes, health status measures, quality of life, and change in disease status.

The existing literature evaluating femoroacetabular impingement surgery as a treatment for patients who are children ≤15 years of age with slipped capital femoral epiphysis associated femoroacetabular impingement has varying lengths of follow up. At least one year of follow-up is desirable to assess outcomes.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:

a. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;

b. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.

c. To assess longer-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.

d. Studies with duplicative or overlapping populations were excluded.

Review of Evidence
The evidence for the use of femoroacetabular impingement surgery to treat children with slipped capital femoral epiphysis associated femoroacetabular impingement consists of observational studies.

Observational Studies
Guindani et al (2017) published results for patients less than 18 years of age undergoing surgical dislocation for several indications. Among the 51 patients (53 hips) in the study, 13 (24%) hips had the diagnosis of slipped capital femoral epiphysis. Mean age at surgery for the whole population was 14 years and mean follow-up was 3 years. Outcomes post-surgery differed by indication. Slipped capital femoral epiphysis patients reported significant improvements in the following pre- and post-measurements: Nonarthritic Hip Score and on alpha angles (both
anteroposterior and Lauenstein views). No significant improvements were found in modified Harris Hip Score, 12-Item Short Form Health Survey, or sphericity deviation scores.

Sink et al (2010) retrospectively reviewed data from 2 United States centers evaluating 36 patients (39 hips) with stable slipped capital femoral epiphysis who were treated with open surgical hip dislocation for chronic symptoms. The average time between in situ pinning and surgical hip dislocation was 20 months (range, 6-48 months). Most patients had partial or complete relief of symptoms immediately after initial pinning followed by a recurrence of symptoms consistent with impingement. All but 1 patient had either a labral or a cartilage injury, with labral injury observed in 34 of 39 hips and cartilage injury in 33 or 39 hips; the average depth of cartilage damage was 5 mm (range, 2-10 mm). There was no correlation between slip severity or duration of symptoms and the type of cartilage injury.

Ziebarth et al (2009) with Ganz as coauthor conducted a joint 2-center retrospective review that assessed data from their Swiss institution (n=30) and a children's hospital in Boston (n=10). Follow-up was 1 to 8 years for patients between 9 and 18 years of age with moderate-to-severe slipped capital femoral epiphysis who were treated with surgical dislocation. No patients from either institution developed osteonecrosis, infection, deep venous thrombosis, or nerve palsies. Three patients developed delayed unions; none developed nonunions. Five patients required additional surgery for heterotopic ossification (n=1), residual impingement (n=1), or breakage of screw or wire fixation (n=3). The short-term postoperative clinical outcomes were found to be near normal, with similar scores between the operative and nonoperative hips.

As reported by Spencer et al (2006), the same United States institution evaluated 19 patients (age range, 12-43 years) who underwent femoral neck osteoplasty (n=13) or osteoplasty with intertrochanteric osteotomy (n=6) via Ganz-type surgical dislocation. Of 12 patients with a history of slipped capital femoral epiphysis (age range, 12-38 years), 9 reported improved symptom control at 8 to 25 month follow-up. Of the 7 patients (age range, 17-43 years) without slipped capital femoral epiphysis who underwent open surgical dislocation for pistol-grip deformities, 5 reported worse symptoms or minimal relief. Outcomes for patients with a chondral flap were worse than for patients without a chondral flap.

Section Summary: Children with Slipped Capital Femoral Epiphysis-Associated Femoroacetabular Impingement
The evidence for the use of femoroacetabular impingement surgical management for children with slipped capital femoral epiphysis associated femoroacetabular impingement consists of observational studies. Currently, there is no method to determine which children with slipped capital femoral epiphysis will develop femoroacetabular impingement. While most patients experienced symptom relief following femoroacetabular impingement surgery, the surgery is invasive, and complications (e.g., delayed union) have been reported.

REVISION ARTHROSCOPIC SURGERY
Clinical Context and Therapy Purpose
The purpose of revision arthroscopic surgery is to provide a treatment option that is an alternative to or an improvement on existing therapies, such as conservative management, in patients with residual femoroacetabular impingement symptoms following primary surgery.
The question addressed in this evidence review is: Does the use of surgical treatments (open surgery, arthroscopic surgery, mixed open/arthroscopic surgery) improve the net health outcome in individuals with residual femoroacetabular impingement symptoms following primary surgery?

The following PICO was used to select literature to inform this review.

Patients
The relevant population of interest is individuals with residual femoroacetabular impingement symptoms following primary surgery.

Interventions
The therapy being considered is revision arthroscopic surgery. The objective of surgical treatment of femoroacetabular impingement is to provide symptom relief and reduce further joint damage.

Patients with residual femoroacetabular impingement symptoms following primary surgery are actively managed by orthopedic surgeons, physical therapists and primary care providers in an inpatient surgical setting.

Comparators
Comparators of interest include conservative management. Conservative management includes activity changes, non-steroidal anti-inflammatory medications, and physical therapy.

Outcomes
The general outcomes of interest are symptoms functional outcomes, health status measures, quality of life, and change in disease status.

The existing literature evaluating revision arthroscopic surgery as a treatment for residual femoroacetabular impingement symptoms following primary surgery has varying lengths of follow-up. While studies described below all reported at least one outcome of interest, longer follow-up was necessary to fully observe outcomes. At least one year of follow-up is desirable to adequately assess outcomes.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess longer-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
- Studies with duplicative or overlapping populations were excluded.

Review of Evidence
The evidence for revision arthroscopic surgery to treat patients with residual femoroacetabular impingement consists of systematic reviews as well as observational studies, published after those reviews.
Systematic Reviews
O'Connor et al (2019) published a systematic review and meta-analysis on revision hip arthroscopy, which included 15 studies for review identifying 4,765 hips in 4,316 patients. The most common indication for revision surgery was inadequate bony resection during the index procedure. Meta-analysis indicated significant improvements of patient-reported outcomes from baseline to final follow-up after revision surgery based on the modified Harris Hip Score (increase of 17.20 points), the Hip Outcome Score - Activities of Daily Living (improvement by 13.98 points), and the Visual Analog Scale (decrease of 3.16 points). However, while patient-reported outcomes improve significantly after revision, they remain lower than those of patients undergoing primary hip arthroscopic surgery.

Sardana et al (2015) published a systematic review on revision hip arthroscopy, considering articles published through July 2014. Three prospective case-control studies and 3 retrospective chart reviews, providing information on 448 hips, were selected. The most common indications for revision surgery were residual femoroacetabular impingement, labral tears, and chondral lesions. The mean interval between index and revision procedures was 25.6 months (range, 20.5-36 months). Patients most often requiring revision surgery were women (60%) and younger patients (mean age, 33.4 years). Revision hip arthroscopy improved functional outcomes (33.6% improvement in Harris Hip Score) and pain relief. Reviewers noted that the studies were low-quality (level III and IV).

A systematic review by Cvetanovich et al (2015) evaluated revision hip arthroscopy. Reviewers included 5 studies, with a total of 348 revision hip arthroscopies. The mean age of patients was 31.4 years, and 60% were female. The mean interval between index and revision procedures was 27.8 months. The most common indication for revision surgery was residual femoroacetabular impingement (81%). At a mean of 22.4-month follow-up, revision hip arthroscopy resulted in improved functional outcomes, as measured by the Harris Hip Score (weighted mean difference, 56.8 preoperative vs 72.0; p=0.01), Nonarthritic Hip Score, Hip Outcome Score, and 12-Item Short Form Health Survey.

Observational Studies
Gwathmey et al (2017) reported on outcomes for 186 patients (190 hips) who underwent revision hip arthroscopy. All patients (mean age, 32.7 years; range 14-64 years) had undergone at least 1 prior hip arthroscopy (range, 1-6) and were prospectively assessed using the modified Harris Hip Score at both baseline and 3, 12, 24 and 60 months post-surgery. Femoroacetabular impingement was treated in 79 revision cases. The mean improvement in the modified Harris Hip Score for the femoroacetabular impingement correction as the primary procedure was 27.4 months (mean follow-up, 44.7 months). The overall improvement for femoroacetabular impingement correction revision was 21.9 points (mean follow-up, 43.5 months).

A case-control study by Newman et al (2016) compared outcomes after revision hip arthroscopy with outcomes after primary hip arthroscopy among patients 18 years of age and younger. Each patient in the revision hip arthroscopic surgery group (n=42) was matched with 2 patients undergoing primary hip arthroscopic surgery (n=84). Outcomes included the Hip Outcome Score ADLs and sports scales, Harris Hip Score, and 12-Item Short Form Health Survey Physical Component Summary scores. Follow-up was conducted for at least 2 years. There were no significant differences between groups in Hip Outcome Score ADLs scale and 12-Item Short Form
Health Survey Physical Component Summary scores. However, the primary arthroscopic surgery group had significantly higher scores on Hip Outcome Score sports scale, Harris Hip Score, and patient satisfaction.

Section Summary: Revision Arthroscopic Surgery
The evidence for revision arthroscopic surgery for patients with residual femoroacetabular impingement symptoms consists of two systematic reviews of observational studies. The observational studies, although low-quality, showed consistently favorable functional outcomes following revision surgery. The evidence for revision arthroscopic surgery for children consists of one observational study. Results have shown that children receiving revision surgery have functional outcomes comparable to children receiving primary arthroscopic surgery.

Summary of Evidence
For individuals who are adults with asymptomatic femoroacetabular impingement who receive femoroacetabular impingement surgery, there is no direct evidence that the surgical treatment will prevent the development of osteoarthritis. Relevant outcomes are symptoms, functional outcomes, health status measures, quality of life, and change in disease status. Indirect evidence consists of observational studies. In retrospective studies of patients with osteoarthritis, the relevant outcomes were radiographic evidence of hip joint malformations. In prospective studies of patients with femoroacetabular impingement, the relevant outcome is progression to osteoarthritis. Several large observational studies (>1000 patients), as well as smaller studies, have shown radiographic evidence of relationships between abnormal hip morphology and the development of osteoarthritis. There have been no studies in which femoroacetabular impingement surgery was performed on patients with femoroacetabular impingement morphology but no symptoms. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are adults with symptomatic femoroacetabular impingement who receive femoroacetabular impingement surgery, the evidence includes systematic reviews of large and small observational studies and a small randomized controlled trial. Relevant outcomes are symptoms, functional outcomes, health status measures, quality of life, and change in disease status. Open hip dislocation surgery and arthroscopic surgery are the most common surgical techniques performed on patients with femoroacetabular impingement. Systematic reviews have evaluated open hip dislocation surgery and arthroscopic surgery, compared with no comparator, nonsurgical management, and other surgical techniques. Compared with nonsurgical management, all types of surgical techniques have resulted in significant improvements in functional outcomes, pain, and radiographic measurements. The reviews were limited when comparing surgical techniques with each other because patient characteristics and outcome measurements were heterogeneous among studies. The evidence is sufficient to determine the technology results in a meaningful improvement in the net health outcome.

For individuals who are children 15 years of age or younger with symptomatic femoroacetabular impingement who receive femoroacetabular impingement surgery, the evidence includes systematic reviews evaluating small observational studies and case series. Relevant outcomes are symptoms, functional outcomes, health status measures, quality of life, and change in disease status. While the studies reported reductions in pain and improvements in functional outcomes, the sample sizes were relatively small, with an average of 54 patients per study. The evidence is insufficient to determine the effects of the technology on health outcomes.
For individuals who are children 15 years of age or younger with slipped capital femoral epiphysis-associated femoroacetabular impingement who receive femoroacetabular impingement surgery, the evidence includes small observational studies (range, 19-51 patients). Relevant outcomes are symptoms, functional outcomes, health status measures, quality of life, and change in disease status. While most patients experienced symptom relief following femoroacetabular impingement surgery, the surgery is invasive and complications (e.g., nonunions) were reported. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have residual femoroacetabular impingement symptoms following a primary surgery who receive revision arthroscopic surgery, the evidence includes systematic reviews of observational studies (>400 patients). Relevant outcomes are symptoms, functional outcomes, health status measures, quality of life, and change in disease status. Though the studies were of low-quality, consistent improvements in functional outcomes, pain relief, and patient satisfaction were reported, in some cases beyond three years. The evidence is sufficient to determine the technology results in a meaningful improvement in the net health outcome.

SUPPLEMENTAL INFORMATION

Clinical Input From Physician Specialty Societies and Academic Medical Centers
While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

In response to requests, input was received from 2 physician specialty societies (3 reviewers) and 2 academic medical centers while this policy was under review in 2009. All input supported the use of open or arthroscopic surgery as an appropriate treatment for femoroacetabular impingement in selected patients when conservative treatment has failed.

Practice Guidelines and Position Statements

National Institute for Health and Care Excellence
In 2011, the National Institute for Health and Care Excellence (NICE) issued guidance on arthroscopic femoroacetabular surgery for hip impingement syndrome. The NICE considered the evidence on the efficacy of arthroscopic femoroacetabular surgery for hip impingement syndrome to be adequate for symptom relief in the short and medium term.

The NICE (2011) guidance on open femoroacetabular surgery for hip impingement syndrome indicated that evidence for this procedure was adequate for symptom relief in the short and medium term.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this review are listed in Table 1.
Table 1. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT03909178</td>
<td>Arthroscopic Labral Repair Versus Physical Therapy for Tears of the Acetabular Labrum in Patients Age 40 and Older</td>
<td>80</td>
<td>Jun 2019 (recruiting)</td>
</tr>
<tr>
<td>NCT01623843</td>
<td>Femoroacetabular Impingement RandomiSed Controlled Trial With an Embedded Prospective Cohort (FIRST-EPIC)</td>
<td>220</td>
<td>Dec 2020 (ongoing)</td>
</tr>
<tr>
<td>NCT04243447</td>
<td>Identification of Predictors for Clinical Outcomes in Femoroacetabular Impingement Surgery (DoD FAI-2)</td>
<td>800</td>
<td>Sep 2023 (recruiting)</td>
</tr>
<tr>
<td>NCT02692807</td>
<td>Arthroscopic Surgical Procedures Versus Sham Surgery for Patients with Femoroacetabular Impingement and/or Labral Tears: A Multicenter, International, Double-Blinded, Randomized Controlled Trial (HIPARTI)</td>
<td>140</td>
<td>Dec 2035 (recruiting)</td>
</tr>
<tr>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02306525</td>
<td>Outcome after Arthroscopic Treatment of Patients in Horsens and Aarhus with Femoroacetabular Impingement: the HAFAI Cohort</td>
<td>90</td>
<td>Mar 2017 (completed)</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

CODING

The following codes for treatment and procedures applicable to this policy are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

CPT/HCPCS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>29914</td>
<td>Arthroscopy, hip, surgical; with femoroplasty (i.e., treatment of cam lesion)</td>
</tr>
<tr>
<td>29915</td>
<td>Arthroscopy, hip, surgical; with acetabuloplasty (i.e., treatment of pincer lesion)</td>
</tr>
<tr>
<td>29916</td>
<td>Arthroscopy, hip, surgical; with labral repair</td>
</tr>
</tbody>
</table>

ICD-10 Diagnoses

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M24.151</td>
<td>Other articular cartilage disorders, right hip</td>
</tr>
<tr>
<td>M24.152</td>
<td>Other articular cartilage disorders, left hip</td>
</tr>
<tr>
<td>M24.851</td>
<td>Other specific joint derangements of right hip, not elsewhere classified</td>
</tr>
<tr>
<td>M24.852</td>
<td>Other specific joint derangements of left hip, not elsewhere classified</td>
</tr>
<tr>
<td>M25.551</td>
<td>Pain in right hip</td>
</tr>
<tr>
<td>M25.552</td>
<td>Pain in left hip</td>
</tr>
<tr>
<td>M25.851</td>
<td>Other specified joint disorders, right hip</td>
</tr>
<tr>
<td>M25.851</td>
<td>Other specified joint disorders, left hip</td>
</tr>
<tr>
<td>M25.251</td>
<td>Chondromalacia, right hip</td>
</tr>
<tr>
<td>M25.252</td>
<td>Chondromalacia, left hip</td>
</tr>
</tbody>
</table>
REVISIONS

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-21-2015</td>
<td>Updated Description section.</td>
</tr>
<tr>
<td></td>
<td>Updated Rationale section.</td>
</tr>
<tr>
<td></td>
<td>Updated References section.</td>
</tr>
<tr>
<td>05-24-2017</td>
<td>Updated Description section.</td>
</tr>
<tr>
<td></td>
<td>In Policy section:</td>
</tr>
<tr>
<td></td>
<td>- In Item A 1 a, removed "(e.g., ≥15)" to read, "Candidates should be skeletally mature with documented closure of growth plates."</td>
</tr>
<tr>
<td></td>
<td>- In Item A 3 a, removed "-type" to read, "Morphology indicative of cam or pincer FAI (e.g., pistol-grip deformity, femoral head-neck offset with an alpha angle greater than 50°, a positive wall sign, acetabular retroversion [overcoverage with crossover sign]), coxa profunda or protrusion, or damage of the acetabular rim;"</td>
</tr>
<tr>
<td></td>
<td>Updated Rationale section.</td>
</tr>
<tr>
<td></td>
<td>Updated References section.</td>
</tr>
<tr>
<td>06-06-2018</td>
<td>Updated Description section.</td>
</tr>
<tr>
<td></td>
<td>In Policy section:</td>
</tr>
<tr>
<td></td>
<td>- In Item A 2 a, removed "that is" to read, "Moderate-to-severe hip pain worsened by flexion activities (e.g., squatting or prolonged sitting) that significantly limits activities;"</td>
</tr>
<tr>
<td></td>
<td>- Updated Policy Guidelines.</td>
</tr>
<tr>
<td></td>
<td>Updated Rationale section.</td>
</tr>
<tr>
<td></td>
<td>In Coding section:</td>
</tr>
<tr>
<td></td>
<td>- Removed ICD-9 codes.</td>
</tr>
<tr>
<td></td>
<td>Updated References section.</td>
</tr>
<tr>
<td>06-19-2019</td>
<td>Updated Description section.</td>
</tr>
<tr>
<td></td>
<td>Updated Rationale section.</td>
</tr>
<tr>
<td></td>
<td>In Coding section:</td>
</tr>
<tr>
<td></td>
<td>- Removed CPT code 27299.</td>
</tr>
<tr>
<td></td>
<td>Updated References section.</td>
</tr>
<tr>
<td>04-19-2021</td>
<td>Updated Description section.</td>
</tr>
<tr>
<td></td>
<td>Updated Rationale section.</td>
</tr>
<tr>
<td></td>
<td>Updated References section.</td>
</tr>
</tbody>
</table>

REFERENCES

Other References
1. Blue Cross and Blue Shield of Kansas Orthopedic Liaison Committee, June 2016; August 2017.