

Medical Policy

Title: Peroral Endoscopic Myotomy for Treatment of Esophageal Achalasia and Gastroparesis

Related Policies:	<ul style="list-style-type: none"> ▪ <i>Transesophageal Endoscopic Therapies for Gastroesophageal Reflux Disease</i> ▪ <i>Botulinum Toxin</i>
-------------------	---

Professional / Institutional
Original Effective Date: February 4, 2026
Latest Review Date:
Current Effective Date: February 4, 2026

State and Federal mandates and health plan member contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. To verify a member's benefits, contact [Blue Cross and Blue Shield of Kansas Customer Service](#).

The BCBSKS Medical Policies contained herein are for informational purposes and apply only to members who have health insurance through BCBSKS or who are covered by a self-insured group plan administered by BCBSKS. Medical Policy for FEP members is subject to FEP medical policy which may differ from BCBSKS Medical Policy.

The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents of Blue Cross and Blue Shield of Kansas and are solely responsible for diagnosis, treatment and medical advice.

If your patient is covered under a different Blue Cross and Blue Shield plan, please refer to the Medical Policies of that plan.

Populations	Interventions	Comparators	Outcomes
Individuals: <ul style="list-style-type: none"> • Who are adults with achalasia 	Interventions of interest are: <ul style="list-style-type: none"> • Peroral endoscopic myotomy 	Comparators of interest are: <ul style="list-style-type: none"> • Esophageal dilation • Heller myotomy • Botulinum toxin injection 	Relevant outcomes include: <ul style="list-style-type: none"> • Symptoms • Functional outcomes

Populations	Interventions	Comparators	Outcomes
			<ul style="list-style-type: none"> • Health status measures • Resource utilization • Treatment-related morbidity
Individuals: <ul style="list-style-type: none"> • Who are pediatric patients with achalasia 	Interventions of interest are: <ul style="list-style-type: none"> • Peroral endoscopic myotomy 	Comparators of interest are: <ul style="list-style-type: none"> • Esophageal dilation • Heller myotomy • Botulinum toxin injection 	Relevant outcomes include: <ul style="list-style-type: none"> • Symptoms • Functional outcomes • Health status measures • Resource utilization • Treatment-related morbidity
Individuals: <ul style="list-style-type: none"> • Who are adults with gastroparesis 	Interventions of interest are: <ul style="list-style-type: none"> • Gastric peroral endoscopic myotomy 	Comparators of interest are: <ul style="list-style-type: none"> • Medical management (metoclopramide/domperidone or anti-emetics) • Gastric electrical stimulation • Botulinum toxin injection 	Relevant outcomes include: <ul style="list-style-type: none"> • Symptoms • Functional outcomes • Health status measures • Resource utilization • Treatment-related morbidity

DESCRIPTION

Esophageal achalasia is characterized by reduced numbers of neurons in the esophageal myenteric plexuses and reduced peristaltic activity, making it difficult for individuals to swallow food and possibly leading to complications such as regurgitation, coughing, choking, aspiration pneumonia, esophagitis, ulceration, and weight loss. Peroral endoscopic myotomy (POEM) is a novel endoscopic procedure that uses the oral cavity as a natural orifice entry point to perform myotomy of the lower esophageal sphincter (LES). This procedure is intended to reduce the total number of incisions needed and thus the overall invasiveness of surgery. Gastric peroral endoscopic myotomy (G-POEM) is a similar procedure with the exception that it myotomizes the pylorus rather than LES.

OBJECTIVE

The objective of this evidence review is to determine whether peroral endoscopic myotomy improves the net health outcome in individuals with esophageal achalasia.

BACKGROUND

Esophageal Achalasia

Esophageal achalasia is characterized by reduced numbers of neurons in the esophageal myenteric plexuses and reduced peristaltic activity, making it difficult for patients to swallow food and possibly leading to complications such as regurgitation, coughing, choking, aspiration pneumonia, esophagitis, ulceration, and weight loss. Achalasia is estimated to affect 18 out of every 100,000 individuals in the U.S., and the incidence of 10.5 per 100,000 person-years, with increased rates reported with more advanced age.¹

Treatment

Treatment options for achalasia have included pharmacotherapy (eg, injections with botulinum toxin), pneumatic dilation, and laparoscopic Heller myotomy.^{2,3} Although the latter 2 are considered the standard treatments because of higher success rates and relatively long-term efficacy compared with pharmacotherapy, both are associated with a perforation risk of about 1%. Heller myotomy is the most invasive of the procedures, requiring laparoscopy and surgical dissection of the esophagogastric junction.³ One-year response rates of 86% and major mucosal tear rates requiring subsequent intervention of 0.6% have been reported.⁴

Peroral endoscopic myotomy (POEM) is a novel endoscopic procedure developed in Japan.^{3,5} This procedure is performed with the patient under general anesthesia.⁶ After tunneling an endoscope down the esophagus toward the esophageal-gastric junction, a surgeon performs the myotomy by cutting only the inner, circular lower esophageal sphincter (LES) muscles through a submucosal tunnel created in the proximal esophageal mucosa. POEM differs from laparoscopic surgery, which involves the complete division of both circular and longitudinal LES muscle layers. Cutting the dysfunctional muscle fibers that prevent the LES from opening allows food to enter the stomach more easily.^{3,6}

Gastroparesis

Gastroparesis is characterized by symptoms of nausea, vomiting, bloating, early satiety, and pain, which is caused by delayed gastric emptying without mechanical obstruction.⁷ The estimated U.S. prevalence of difficult to ascertain due to the weak correlation of symptoms with gastric emptying which results in a high rate of underdiagnosis. A systematic review of the literature determined that the prevalence of confirmed gastroparesis, characterized by symptoms and delayed gastric emptying, varies widely in the general population, with estimates ranging from 14 to 268 cases per 100,000 adults. Furthermore, the incidence of this condition spans from 1.9 to 6.3 per 100,000 person-years.⁸

Treatment

Treatment options for gastroparesis have included dietary modification (smaller meal sizes, avoidance of carbonated beverages, smoking or high doses of alcohol, and in some cases enteral nutrition via jejunostomy), optimization of hydration and glycemic control, pharmacotherapy (eg, antiemetics or Metoclopramide, or off-label medications for symptom control such as

domperidone, erythromycin, tegaserod or centrally acting antidepressants), gastric electrical stimulation, venting gastrostomy, feeding jejunostomy, intra-pyloric botulinum injection, partial gastrectomy, and pyloroplasty.⁷ Gastric peroral endoscopic myotomy (G-POEM), which endoscopically performs the equivalent of pyloroplasty, is being investigated for the treatment of gastroparesis. G-POEM myotomizes the pylorus rather than the circular LES but otherwise consists of the same techniques described above.

REGULATORY STATUS

Peroral endoscopic myotomy uses available laparoscopic instrumentation and, as a surgical procedure, is not subject to regulation by the U.S. Food and Drug Administration.

POLICY

- A. Peroral endoscopic myotomy is considered **experimental / investigational** as a treatment for pediatric and adult esophageal achalasia.
- B. Gastric peroral endoscopic myotomy is considered **experimental / investigational** as a treatment for gastroparesis.

Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

RATIONALE

This evidence review was created using searches of the PubMed database. The most recent literature update was performed through September 23, 2025.

Evidence reviews assess the clinical evidence to determine whether the use of technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life, and ability to function, including benefits and harms. Every clinical condition has specific outcomes that are important to patients and managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of technology, 2 domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent 1 or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. Randomized controlled trials are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

PERORAL ENDOSCOPIC MYOTOMY FOR ADULT INDIVIDUALS WITH ACHALASIA

Clinical Context and Therapy Purpose

The purpose of peroral endoscopic myotomy (POEM) in individuals who have esophageal achalasia is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The relevant population of interest is individuals with esophageal achalasia. Esophageal achalasia is characterized by reduced numbers of neurons in the esophageal myenteric plexuses and reduced peristaltic activity, making it difficult for individuals to swallow food and possibly leading to complications such as regurgitation, coughing, choking, aspiration pneumonia, esophagitis, ulceration, and weight loss.

Interventions

The therapy being considered is POEM. The POEM procedure involves tunneling an endoscope down the esophagus toward the esophageal-gastric junction. A surgeon performs the myotomy by cutting only the inner, circular lower esophageal sphincter (LES) muscles through a submucosal tunnel created in the proximal esophageal mucosa.

Comparators

Comparators of interest include esophageal dilation, laparoscopic Heller myotomy (LHM), and botulinum toxin injection.

Esophageal dilation is performed in a graded approach, starting with a small balloon (typically 30 mm), then progressing to larger balloons (35 to 40 mm) 2 to 4 weeks later. The balloons are placed at the level of the gastroesophageal junction and inflated slowly, in order to tear the muscle fibers in a controlled manner. Esophageal perforations are a potential complication. Long-term studies have estimated that approximately one-third of affected individuals may need a repeat procedure.

Laparoscopic Heller myotomy is a minimally invasive procedure in which the thick muscle of the lower esophagus and the upper stomach is cut to open the tight LES. The procedure involves 5 small incisions to insert the camera and surgical instruments. Reported success rates are high (>90%), with a 5-year follow-up study showing an 8% rate of symptom recurrence.

Endoscopic botulinum toxin is injected with a sclerotherapy needle approximately 1 cm above the esophagogastric junction. The complication rate is low and approximately 80% of individuals experience immediate symptom relief. The effect diminishes over time, with more than 60% of individuals reporting recurrent symptoms at 1 year.

Outcomes

The general outcomes of interest are symptom relief and treatment-related morbidity.

Symptom relief may be measured by the Eckardt score, which is comprised of 4 major symptoms of achalasia: dysphagia, regurgitation, retrosternal pain, and weight loss. Each symptom receives a score from 0 (none) to 3 (severe), for a maximum score of 12. Total scores of 4 or greater represent treatment failure.⁹

Treatment-related morbidity of concern is the development of gastroesophageal reflux disease (GERD). Gastroesophageal reflux disease risk is high with this procedure because POEM involves ablating the LES without adding any type of anti-reflux mechanism. Additional complications include thoracic effusion, subcutaneous emphysema, and esophagitis.

Symptom relief may be experienced shortly following the procedure. Assessment of durability of relief requires a follow-up of months to years.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies;
- To assess long-term outcomes and adverse effects, single-arm studies that capture longer periods of follow-up and/or larger populations were sought;
- Studies with duplicative or overlapping populations were excluded.

REVIEW OF EVIDENCE

Systematic Reviews

Multiple systematic reviews and meta-analyses have been published to evaluate POEM as a treatment for achalasia. These reviews are heterogeneous in whether they assessed data on POEM alone or compared POEM to other interventions, which outcomes they assessed, which studies they included, and in the statistical methods used. The majority addressed the comparison of POEM to LHM.

Results of systematic reviews that primarily relied on data from noncomparative case series studies are not comprehensively summarized herein.^{10,11,12,13,14} This is because conclusions on comparative effects cannot be determined from their findings. Some systematic reviews of noncomparative case series did not calculate comparative treatment effects. Others that did had important limitations in their statistical methods, including use of unadjusted indirect comparison approaches, which are subject to a variety of confounding factors that may bias the effect estimate. For example, Andolfi et al (2019) published a meta-analysis of success rates based on manometric subtypes.¹⁴ The authors calculated pooled success rates for POEM, LHM, and pneumatic dilation (PD) in type I, II, and III achalasia, respectively, based primarily on data from noncomparative case series studies. Pooled success rates for POEM in types I, II, and III were 94% (95% confidence interval [CI], 89% to 98%), 97% (95% CI, 93% to 99%), and 93% (95% CI, 88% to 97%), respectively, which were significantly higher compared to LHM for type I (odds ratio [OR], 2.97; 95% CI, 1.09 to 8.03) and type III (OR, 3.50; 95% CI, 1.39 to 8.77), but not type II. However, the use of an unadjusted indirect comparison approach in this analysis precludes drawing conclusions based on these findings.

Peroral Endoscopic Myotomy Versus Laparoscopic Heller Myotomy or Pneumatic Dilation

Below are summarized the most recent systematic reviews (published on or after 2020) that address the comparison of POEM to LHM or PD using data from comparative observational studies and RCTs. Table 1 provides a crosswalk of the comparative studies included in these systematic reviews.

Table 1. Comparison of Studies of POEM versus LHM or PD Included in Meta-Analysis

Study	Dirks et al (2021) ¹⁵	Facciorusso et al (2021) ¹⁶	Martins et al (2020) ¹⁷	Aiolfi et al (2020) ¹⁸	Ma et al (2025) ¹⁹
Hungness et al (2013) ⁶ ,	●		●	●	
Teitelbaum et al (2013) ²⁰ ,			●	●	
Ujiki et al (2013) ²¹ ,	●		●	●	
Bhayani et al (2014) ²² ,	●		●	●	
Kumagai et al (2015) ²³ ,	●		●	●	
Kumbhari et al (2015) ²⁴ ,	●			●	
Chan et al (2016) ²⁵ ,			●	●	
Sanaka et al (2016) ²⁶ ,	●		●		
Schneider et al (2016) ²⁷ ,	●		●		
Kashab et al (2017) ²⁸ ,	●		●		
Leeds et al (2017) ²⁹ ,	●			●	
de Pascale et al (2017) ³⁰ ,	●		●		●
Peng et al (2017) ³¹ ,	●		●		●
Ward et al (2017) ³² ,	●		●		
Hanna et al (2018) ³³ ,	●			●	●
Ramirez et al (2018) ³⁴ ,	●			●	
Caldaro et al (2015) ³⁵ ,	●				
Fumagalli et al (2016) ³⁶ ,	●				
Greenleaf et al (2018) ³⁷ ,	●				
Kim et al (2019) ³⁸ ,	●				
Meng et al (2017) ³⁹ ,	●				
Miller et al (2017) ⁴⁰ ,	●				
Ponds et al (2019) ⁴¹ ,	●	●			
Sanaka et al (2019) ⁴² ,	●				
Wang et al (2016) ⁴³ ,	●				
Werner et al (2019) ⁴⁴ ,	●	●			●
Wirsching et al (2019) ⁴⁵ ,	●				
Zheng et al (2019) ⁴⁶ ,	●				

Study	Dirks et al (2021) ¹⁵	Facciorusso et al (2021) ¹⁶	Martins et al (2020) ¹⁷	Aiolfi et al (2020) ¹⁸	Ma et al (2025) ¹⁹
Podboy et al (2020) ⁴⁷ ,	●				●
Tan et al (2016) ⁴⁸ ,	●				
Boeckxstaens et al (2011) ⁴⁹ ,		●			
Borges et al (2014) ⁵⁰ ,		●			
Kostic et al (2007) ⁵¹ ,		●			
Hamdy et al (2015) ⁵² ,		●			
Shally et al (2023) ⁵³ ,					●
Costantini et al (2020) ⁵⁴ ,					●
Shea et al (2020) ⁵⁵ ,					●
Attaar et al (2021) ⁵⁶ ,					●

LHM: laparoscopic Heller myotomy; PD: pneumatic dilation; POEM: peroral endoscopic myotomy.

Tables 2 and 3 summarize characteristics and results of the included systematic reviews published on or after 2020 that address the comparison of POEM to LHM or PD using data from comparative studies. The included comparative studies are heterogeneous in their patient populations, proportions of patients with any previous treatments, and proportions of each achalasia subtype I through III, follow-up duration, and definition of treatment success. These differences limit interpretation of their findings.

Dirks et al (2021) conducted a systematic review and meta-analysis that evaluated the efficacy and safety of POEM in comparison to LHM and PD.¹⁵ The review included 28 studies (2 RCTs [Ponds et al (2019)⁴¹, and Werner et al (2019)⁴⁴]; 26 observational studies). Most comparative studies on POEM included LHM (n=21), with a minority involving POEM versus PD (n=8). One study included all 3 interventions. Since POEM is a relatively new intervention, studies evaluating POEM often had shorter follow-up. Two studies included children, with 1 each comparing POEM to PD and LHM. The majority of included studies had a baseline achalasia subtype that was either predominantly type 2 and/or type 1; only 1 study had predominantly type 3 achalasia. The vast majority of included studies had <100 total patients. Results revealed POEM to have similar efficacy to LHM. However, POEM treated dysphagia better than PD in a RCT and observational studies and POEM needed reintervention less than PD in a RCT (risk ratio [RR] 0.19; 95% CI, 0.08 to 0.47) and LHM in an observational study (RR 0.33; 95% CI, 0.16 to 0.68). POEM had similar safety outcomes to LHM and PD. The authors concluded that POEM has similar outcomes to LHM and greater efficacy than PD;

Facciorusso et al (2021) completed a systematic review and network meta-analysis of first-line therapeutic interventions for achalasia.¹⁶ The review included 6 RCTs in adults with achalasia that compared the efficacy of PD (n=260), LHM (n=309) and POEM (n=176). Four trials compared LHM with PD, 1 compared POEM to PD, and 1 compared POEM with LHM. Overall, low-quality evidence, based primarily on direct evidence, supported the use of POEM over PD for treatment success at 1 year while there was no significant difference observed between LHM and

POEM. Severe esophagitis occurred at an incidence of 5.3%, 3.7%, and 1.5% for POEM, LHM, and PD, respectively. Procedure-related serious adverse events after POEM, LHM, and PD were 1.4%, 6.7%, and 4.2%, respectively. The authors concluded that POEM and LHM have comparable efficacy and may increase treatment success as compared to PD, with low confidence in estimates.

Martins et al (2020) conducted a systematic review and meta-analysis of the largest number of comparative observational studies and patients treated with POEM (n=359) or LHM (n=534).¹⁷ Study quality was assessed using the Modified New Castle Ottawa Scale and all included studies were considered to be adequate for analysis. POEM demonstrated small improvements in Eckardt scores and reduced length of stay, comparable operative time, but more major adverse events. Most of the major adverse events were described as being related to unrecognized intraoperative mucosal perforation. An important limitation of this meta-analysis is that it did not take into account between-group differences in pre-operative Eckardt score levels at baseline.

Aiolfi et al (2020) conducted a systematic review and Bayesian random-effects network meta-analysis that compared POEM to LHM and PD.¹⁸ Overall, 19 studies of 4407 patients were included. Of those, 10 studies of 645 patients directly compared POEM and LHM and none directly compared POEM and PD. POEM was associated with improved dysphasia remission and Eckardt scores, but higher risk of GERD compared to LHM. Results of the comparison to PD are discussed below Table 3. Important limitations of this network meta-analysis include its inclusion of arm-based indirect comparisons and the inherent bias of its reliance on observational studies.

Ma et al (2025) conducted a systematic review that compared POEM to LHM in patients with achalasia.¹⁹ Nine studies (N=1099) were included. Treatment success as measured by Eckardt score ≤ 3 was similar with POEM compared to LHM, with no significant difference between groups. Individuals who received POEM had a significantly shorter length of hospital stay compared to those who received LHM. When outlier studies were excluded, the risk of esophagitis was significantly greater with POEM compared to LHM, although there was a greater odds of continued postoperative proton pump inhibitor use with POEM as well.

Table 2. Meta-Analysis Characteristics

Systematic Review	Dates	Included Comparative Studies	Participants	N (Range)	Design	Duration
Dirks et al (2021) ¹⁵	2010-2019	28	Adult and pediatric patients with achalasia	2339 (15 to 241)	26 observational; 2 RCTs	Follow-up: ≥ 2 months to 5.4 years; most studies had < 2 year follow-up
Facciorusso et al (2021) ¹⁶	Through Dec 2019	6	Adults with achalasia	745 (50 to 221)	RCTs	Minimum follow-up of 1 year; range: 1 to 5 years
Martins et al (2020) ¹⁷	2012-2017	12	All adult patients (≥ 18 years of	893 (31 to 178)	Observational	9 to 260 weeks

Systematic Review	Dates	Included Comparative Studies	Participants	N (Range)	Design	Duration
			age) with 1 of 3 subtypes of achalasia, with or without prior history of therapy for achalasia			
Aiolfi et al (2020) ¹⁸	2012-2018	10	Esophageal achalasia	645 (23 to 101)	Observational	NR
Ma et al (2025) ¹⁹	2017-2024	9	Individuals with achalasia who underwent POEM vs LHM for treatment	1099 (31 to 280)	2 prospective cohort studies, 6 retrospective cohort studies, 1 RCT	34.2 to 36.7 months

LHM: Laparoscopic Heller myotomy; NR: not reported; POEM: per-oral endoscopic myotomy; RCT: randomized controlled trial.

Table 3. Meta-Analysis Results

Systematic Review	Dysphasia	Eckhardt Score/Treatment Success	GERD	Length of Hospital Stay	Overall major / severe adverse events
Dirks et al (2021) ¹⁵					
POEM vs. LHM; Pooled effect (95% CI)		RCT (success by Eckhardt score): 83% vs. 82%; RR, 1.02 (0.9 to 1.15)	RCT (severe reflux esophagitis): 4.6% vs. 6.4%; RR, 0.73 (0.20 to 2.58)	RCT (mean): 2.9 vs. 3.2; MD, -0.3 (-0.67 to 0.07)	RCT (treatment-related serious adverse events): 3% vs. 7%; RR, 0.32 (0.9 to 1.17)
POEM vs. PD Pooled effect (95% CI)		RCT (success by Eckhardt score): 92% vs. 54%; RR, 1.71 (1.34 to 2.17)	RCT (severe reflux esophagitis): 6% vs. 0%; RR, 3.82 (0.20 to 71.48)		RCT (treatment-related serious adverse events): 0% vs. 1.6%; RR, 0.19 (0.08 to 0.47)
Facciorusso et al (2021) ¹⁶					
POEM vs. LHM RR (95% CI)		Treatment success at 1 year: no significant difference observed Treatment success at 2 years: RR, 1.02 (0.90 to 1.15)			
POEM vs. PD RR (95% CI)		Treatment success at 1 year: RR, 1.29 (0.99 to 1.69)			

Systematic Review	Dysphasia	Eckardt Score/Treatment Success	GERD	Length of Hospital Stay	Overall major / severe adverse events
		Treatment success at 2 years: RR, 1.76 (1.37 to 2.25)			
Martins et al (2020) ¹⁷					
Total N	N/A	249	354	451	Total N
Pooled effect (95% CI)	NR	MD, -0.257 (-0.512 to -0.002)	RD, 0.00 (-0.09 to 0.09) I ² : 0%	MD, -0.6 (-1.11 to -0.09) I ² =70%	"Major events (CD III a and IIIb) were more common in the POEM group"; analysis NR
Aiolfi et al (2020) ¹⁸					
Total N	NR	NR	NR	N/A	N/A
Pooled effect (95% CI)	Remission RR, 1.21 (1.04 to 1.47) I ² =0.0%	MD, -0.6 (-1.4 to -0.2) I ² =17.5%	RR, 1.75 (1.35 to 2.03) I ² =6.3%	NR	NR
Ma et al (2025) ¹⁹					
Total N	NR	6 studies (n=801)	Severe reflux esophagitis: 5 studies (n=531) Continued PPI use: 7 studies (n=860)	6 studies (n=641)	NR
POEM vs. LHM; Pooled effect (95% CI)	NR	Success by Eckardt score: 85.3% vs 79.6%; OR, 1.43 (0.96 to 2.13); p=.08 I ² =0%	Severe reflux esophagitis, total events postoperatively: 94 vs 44; OR, 1.95 (0.86 to 4.39); p=.11 I ² =61% When outlier studies removed - severe reflux esophagitis: OR, 2.57 (1.45 to 4.53) Continued PPI use postoperatively: 157 vs 102 participants; OR, 1.72 (1.03 to 2.89); p=.04 I ² =56%	MD, -0.70 days (-1.03 to -0.36); p<.0001 I ² =56%	NR

CD: Clavien-Dindo; CI: confidence interval; GERD: gastroesophageal reflux disease; LHM: laparoscopic Heller myotomy; MD: mean difference; N/A: not applicable; NR: not reported; OR: odds ratio; PD: pneumatic dilation; POEM:

peroral endoscopic myotomy; PPI: proton pump inhibitor; RCT: randomized controlled trial; RD: risk difference; RR: risk ratio.

Peroral Endoscopic Myotomy Versus Pneumatic Dilation

Zhong et al (2020) conducted a meta-analysis of 7 observational studies comparing POEM (n=298) to PD (n=321).⁵⁷ Achalasia type varied, with 33% type I, 55% type II, and 12% type III. The mean age of the patients in the included studies ranged from 14 to 69 years, including 2 pediatric studies and 2 studies of older adults. Follow-up ranged from 2 to 49.23 months. POEM improved the clinical success rate (24-month RR, 1.35; 95% CI, 1.10 to 1.65; $I^2=70\%$) and change in Eckardt scores (mean difference [MD], 1.19, 95% CI 0.78 to 1.60, $I^2=70\%$); however, the risk of GERD and other complications was higher for POEM compared with PD (RR, 4.17, 95% CI, 1.52 to 11.45, and RR, 3.78; 95% CI, 1.41 to 10.16, respectively). Important limitations of this meta-analysis include the inherent bias of reliance on observational studies and the high between-study clinical and statistical heterogeneity.

Aiolfi et al (2020) conducted a systematic review and Bayesian random-effects network meta-analysis that compared POEM to LHM and PD.¹⁸ Overall, 19 studies of 4407 patients were included. Of those, none directly compared POEM and PD. Therefore, data from the POEM and PD arms of studies that compared them each, respectively, to LHM, were indirectly compared in the network meta-analysis. Compared to PD, POEM was associated with improved dysphasia remission (RR, 1.40; 95% CI, 1.14 to 1.79) and Eckardt scores (MD, -1.2; 95% CI, -2.3 to -0.2), but a higher risk of GERD (RR, 1.36; 95% CI, 1.18 to 1.68). Important limitations of this network meta-analysis include its inclusion of arm-based indirect comparisons and the inherent bias of its reliance on observational studies.

Randomized Controlled Trials

Although included in the 2 most recent meta-analyses, the RCTs by Ponds et al (2019)⁴¹, and Werner et al (2019)⁴⁴, remain the landmark studies involving POEM. These are described below along with more recent trials which have yet to be included in a review or meta-analysis.^{58,59}

Ponds et al (2019) published a RCT comparing POEM and PD for treatment-naïve patients with achalasia.⁴¹ Between 2012 and 2015, patients from 6 sites in 5 countries were randomized to receive either POEM or PD (Tables 4 and 5). The primary outcome was overall treatment success at 2 years, defined as an Eckardt score <3 and the absence of severe complications or retreatment. Based on previously reported success rates, the power calculation for the primary outcome was based on a difference of at least 20%. Treatment success at 2 years was significantly higher in the POEM group. However, POEM had higher rates of reflux esophagitis than PD. Two serious adverse events (including 1 perforation) occurred after PD; no serious adverse events occurred after POEM. The study was limited by lack of blinding, lack of an intention-to-treat analysis, and by the follow-up time starting at treatment initiation rather than at randomization.

Results at 5 years from the RCT by Ponds et al (2019) were published by Kuipers et al (2022).⁶⁰ A total of 62 patients in the POEM group and 63 in the PD group were available for analysis. Treatment success (Eckardt score ≤ 3) at 5 years follow-up favored the POEM group with 50 (81%) having success when compared to 25 (40%) of those treated with pneumatic dilation (absolute difference, 41%; 95% CI, 25% to 57%; $p<.0001$). The median time to treatment failure was 60 months in the POEM group compared with 24 months in the PD group.

Retreatment occurred in 8 (13%) patients in the POEM group compared with 7 (11%) in the PD group. Recurrence of symptoms (defined as having an Eckhardt score >3) occurred in 11 (18%) of POEM patients and 25 (40%) of PD patients. The rate of adverse events was 0% in the POEM group and 2% in the PD group. Amongst patients still in clinical remission at 5 years, proton pump inhibitor (PPI) use was significantly more common in patients treated with POEM (46%) than participants treated with PD (13%; $p=.0082$). In this same subset of patients, the mean GERD questionnaire scores in the POEM group (7; range, 6 to 9) were also significantly higher ($p=.0081$) than in the PD group (6; range, 6 to 7) at 5 years follow-up.

Werner et al (2019) published a randomized, noninferiority trial that compared POEM to LHM plus Dor's fundoplication in patients with idiopathic achalasia.⁴⁴ The primary outcome was clinical success at 2 years, defined as an Eckardt score <3 , without the use of additional treatments. A noninferiority margin of -12.5 percentage points was prespecified as "clinically acceptable" for the primary end point, based on input from the interventional gastroenterologists and surgeons involved in the trial. Analyses were primarily performed in a modified intention-to-treat population of 221 patients, which excluded 20 (8%) patients who withdrew consent, had exclusion criteria discovered post-randomization, or did not undergo treatment. Among the modified intention-to-treat population, the mean age was 48.6 years, 64.2% had no previous therapy, 26.2% had a previous endoscopic PD, and their mean Eckardt symptom score was 6.8. POEM was noninferior to LHM plus Dor's fundoplication for clinical success at 2 years, but rates of reflux esophagitis were higher for POEM. This resulted in more patients in the POEM group receiving daily low-dose PPIs at 24 months. Although a higher rate of serious adverse events was reported in the LHM group, the difference was not statistically significant. This was likely owing to insufficient statistical power for measuring differences in rare outcomes. The most common serious adverse event in the LHM group was mucosal perforation ($n=3$; 2.7%). The RCT was limited by the lack of blinding of outcome assessment.

Five-year results from the RCT by Werner et al (2019) were published by Hugova et al (2025).⁶¹ Data at 5-years were available for 90 (80%) patients in the POEM group and 87 (80%) patients in the LHM group. Clinical success rate was 75% after POEM and 70.8% after LHM (difference, 4.2%; 95% CI, -7.4 to 15.7), meeting noninferiority. The mean Eckardt symptom score decreased from baseline to 5 years in both groups with the overall difference in mean scores being -0.29 (95% CI, -0.62 to 0.05). At 5 years, 26 (41%) of 63 patients after POEM and 18 (31%) of 58 patients after LHM had reflux esophagitis (difference, 10.2%; 95% CI, -7.0 to 26.8). Significant esophagitis (Los Angeles classification grade B, C, or D) was observed in 9 (14%) of 63 patients after POEM and in 4 (7%) of 58 patients after LHM.

Mourna et al (2022) published an RCT that compared POEM to LHM and partial fundoplication in adult patients with achalasia at a single center.⁵⁸ The primary outcome was reflux esophagitis assessed at baseline, 1 month, 6 months, and 1 year post-treatment. Both groups significantly improved from baseline Eckhardt scores at all time points follow-up, but no significant between-group differences were observed. In the combined LHM and partial fundoplication group, treatment success, defined as ≤ 3 -point reduction in Eckhardt score, was confirmed in all patients at each time point follow-up; the POEM group had 100% success at 1 month which fell to 90% and 95% at 6 and 12 months follow-up, respectively. The rates of esophagitis were significantly higher in the POEM group at 1, 6, and 12 months follow-up. No differences in the rate of adverse events were detected between groups.

Saleh et al (2023) published an RCT that compared POEM to pneumatic dilation in adult patients with persistent achalasia symptoms after LHM.⁵⁹ The primary outcome was clinical success at 1 year, defined as an Eckardt score <3, without the use of additional treatments. Two patients in the POEM group were lost to follow-up after randomization or treatment, but analyses of the primary and secondary outcomes were intention-to-treat analyses, and *a priori* power calculations required only 43 participants in each study arm. The median age was 52.5 years with a range of 36% to 40% male participation. At enrollment, both groups had a mean Eckardt score of 6 (interquartile range of 4 to 8). Patients randomized to POEM were significantly more likely to have treatment success at 1-year follow-up than those in the PD group; however, the rate of endoscopic reflux esophagitis was higher amongst participants treated with POEM than PD. The rate of serious adverse events attributed to the intervention was equivalent between groups, but POEM was associated with a greater number of adverse events (31.1%) than PD (20%). Events included candida esophagitis (n=1), Helicobacter pylori infection (n=3), periprocedural mucosal bleeding (n=2), gastric perforations (n=2), foot impaction (n=1), and several other non-upper-gastrointestinal related adverse events (n=5). The RCT was limited by the lack of blinding of outcome assessment and having outcome data through 1-year follow-up.

Table 4. Summary of Key RCT Characteristics

Study	Countries	Sites	Dates	Participants	Interventions	
					Active	Comparator
Ponds et al (2019) ⁴¹	Netherlands, Germany, Italy, Hong Kong	6	2012-2015	Treatment naïve adults with newly diagnosed achalasia and Eckardt score ≥3	POEM (n=64)	PD (n=66) Initial with 30 mm balloon Subsequent with 35 mm balloon if Eckardt score ≥3 at 3 weeks
Werner et al (2019) ⁴⁴	Belgium, Czech Republic, Germany, Italy, Netherlands, Sweden	8	2012-2015	Adults with symptomatic achalasia and Eckardt score ≥3	POEM (n=120)	LHM plus Dor's fundoplication (n=121)
Moura et al (2022) ⁵⁸	Brazil	1	2017-2018	Adults diagnosed with achalasia	POEM (n=20)	LHM plus partial fundoplication(n=20)
Saleh et al (2023) ⁵⁹	Netherlands, Belgium, Italy	3	2014-2020	Adults with symptomatic achalasia and Eckardt score ≥3 following LHM	POEM (n=45)	PD (n=45) Initial with 30 mm balloon and subsequent treatment w 35 mm balloon. Patients with recurrent symptoms between 3 and 12 months were offered additional treatments with 35mm or 40mm balloons.

LHM: laparoscopic Heller's myotomy; PD: pneumatic dilation; POEM: peroral endoscopic myotomy; RCT: randomized controlled trial.

Table 5. Summary of Key RCTs: 2-Year Results

Study	Treatment success, n (%)	PPI use	Endoscopic Reflux Esophagitis	Retreatment	Treatment-related SAE
Ponds et al (2019) ⁴¹ ,	126	92	92	126	126
POEM	58 (92%)	58 Median (IQR) SD 24 (41) 6.5	54 No. (%) SD 22 (41) 6.5	63 No. (%) SD 5 (8) 3.4	63 No. (%) SD 0
PD	34 (54%)	34 Median (IQR) SD 7 (21) 7	29 n (%) SD 2 (7) 4.7	63 n (%) SD 26 (41) 10.5	63 n (%) SD 1(1.6) 1.7
Comparative treatment effect (95% CI)	RR, 1.71 (1.34 to 2.17) ^a	AD, 20 (1 to 38) ^a	AD, 34 (12 to 49) ^a	AD, 33 (17 to 47) ^a	AD, 1.6 (-5 to 10) ^a
Werner et al (2019) ⁴⁴ ,	221	221	165		221
POEM	93 (83.0)	n (%) 41 (38.7)	n (%) 38 (44)	NR	n (%) 3 (2.7)
LHM	89 (81.7)	n (%) 21 (19.4)	n (%) 23 (29)	NR	n (%) 8 (7.3)
Comparative treatment effect (95% CI)	RR, 1.4 (-8.7 to 11.4) ^a	NR	OR, 2.00 (1.03 to 3.85)	NR	RR, 4.6 (-1.1 to 10.4) ^a
Mourna et al (2022) ⁵⁸ ,	40		40		40
POEM	6 months: 90% 12 months: 95%	NR	6 months: 10 (63%) 12 months: 11 (65%)	NR	Any AE: 3 (15%)
LHM	6 months: 100% 12 months: 100%	NR	6 months: 1 (6%) 12 months: 2 (11%)	NR	Any AE: 1 (5%)
Comparative treatment effect (95% CI)	6 months: p=.487 12 months: p=1	NR	6 months: p<.001 12 months: p=.002	NR	p=.605
Saleh et al (2023) ⁵⁹ ,	90	90	90	90	90
POEM	28 (62.2%)	29 (69%)	12 (34.3%)	2 (4.44%)	1 (2.22%)
PD	12 (26.7%)	26 (57.8%)	6 (15%)	14 (42.9%)	1 (2.22%)
Comparative treatment effect (95% CI)	RR: 2.33 (1.37 to 3.99)	NS	NS	NR	NR

^a Unadjusted

AD: absolute difference; AE: adverse event; CI: confidence interval; IQR: interquartile range; LHM: laparoscopic Heller's myotomy; NR: not reported; NS: not significant; OR: odds ratio; PD: pneumatic dilation; POEM: peroral endoscopic myotomy; PPI: proton pump inhibitor; RCT: randomized controlled trial; RR: risk ratio; SAE: severe adverse even; SD: standard deviation.

Tables 6 and 7 summarize the important limitations of the RCTs discussed above.

Table 6. Study Relevance Limitations

Study	Population ^a	Intervention ^b	Comparator ^c	Outcomes ^d	Follow-Up ^e
Ponds et al (2019) ⁴¹			2. PD protocol limited to 1 to 2 dilations as compared to clinical practice 2. Optimal comparator would be LHM	4. Eckardt score not validated symptom assessment	
Werner et al (2019) ⁴⁴	4. Non-US		2. LHM plus Dor's fundoplication		
Mourna et al (2022) ⁵⁸	4. Non-US		2. LHM plus partial fundoplication	4. Eckardt score not validated symptom assessment	
Saleh et al (2023) ⁵⁹	4. Non-US			4. Eckardt score not validated symptom assessment	

LHM: laparoscopic Heller's myotomy; PD: pneumatic dilation.

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

^a Population key: 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.

^b Intervention key: 1. Not clearly defined; 2. Version used unclear; 3. Delivery not similar intensity as comparator; 4. Not the intervention of interest.

^c Comparator key: 1. Not clearly defined; 2. Not standard or optimal; 3. Delivery not similar intensity as intervention; 4. Not delivered effectively.

^d Outcomes key: 1. Key health outcomes not addressed; 2. Physiologic measures, not validated surrogates; 3. No CONSORT reporting of harms; 4. Not establish and validated measurements; 5. Clinical significant difference not prespecified; 6. Clinical significant difference not supported.

^e Follow-Up key: 1. Not sufficient duration for benefit; 2. Not sufficient duration for harms.

Table 7. Study Design and Conduct Limitations

Study	Allocation ^a	Blinding ^b	Selective Reporting ^c	Follow-Up ^d	Power ^e	Statistical ^f
Ponds et al (2019) ⁴¹		1. Blinding not possible due to different technical approaches to each procedure	6. Per protocol analysis	6. Not intent to treat analysis 6. Follow-up insufficient to define long-term effects		3. Inadequate statistical analysis and reporting
Werner et al (2019) ⁴⁴		1. Not blinded outcome assessment				

Study	Allocation ^a	Blinding ^b	Selective Reporting ^c	Follow-Up ^d	Power ^e	Statistical ^f
Mourna et al (2022) ⁵⁸ ,		1. Not blinded outcome assessment				
Saleh et al (2023) ⁵⁹ ,		1. Blinding not possible due to different technical approaches for each procedure				

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

^a Allocation key: 1. Participants not randomly allocated; 2. Allocation not concealed; 3. Allocation concealment unclear; 4. Inadequate control for selection bias.

^b Blinding key: 1. Not blinded to treatment assignment; 2. Not blinded outcome assessment; 3. Outcome assessed by treating physician.

^c Selective Reporting key: 1. Not registered; 2. Evidence of selective reporting; 3. Evidence of selective publication.

^d Follow-Up key: 1. High loss to follow-up or missing data; 2. Inadequate handling of missing data; 3. High number of crossovers; 4. Inadequate handling of crossovers; 5. Inappropriate exclusions; 6. Not intent to treat analysis (per protocol for noninferiority trials).

^e Power key: 1. Power calculations not reported; 2. Power not calculated for primary outcome; 3. Power not based on clinically important difference.

^f Statistical key: 1. Intervention is not appropriate for outcome type: (a) continuous; (b) binary; (c) time to event; 2. Intervention is not appropriate for multiple observations per patient; 3. Confidence intervals and/or p values not reported; 4. Comparative treatment effects not calculated.

Nonrandomized Comparative Studies

Numerous nonrandomized comparative studies have compared POEM and LHM in adults with achalasia. The majority of these studies are included in the systematic reviews described above and will not be comprehensively summarized herein. Those that were not included in previous systematic reviews or that have notable characteristics (ie, focus on important subpopulations, have long-term follow-up) are summarized below.

Docimo et al (2016) published a retrospective study comparing POEM and LHM for individuals with achalasia that was not included in any above-described systematic review.⁶² Patients who underwent POEM (n=44) or LHM (n=122) between 2006 and 2015 were included. There was no difference in average pain scores for POEM and LHM after the first 24 hours (2.7±2.067 vs. 3.29±1.980, p=.472) or at time of discharge (1.6±2.420 vs. 2.09±2.157, p=.0657). The POEM group required significantly fewer narcotics while hospitalized than the LHM group (35.8 mg vs. 101.8 mg, p<.001), and fewer POEM patients needed a prescription for a narcotic analgesic at discharge (6.81% vs. 92.4%, p<.001). Also, the average length of stay was 31.2 hours for POEM and 55.79 for LHM (p<.001). The study was limited by its retrospective nature and its lack of randomization and blinding.

Wang et al (2016) retrospectively reviewed outcomes for POEM (n=21) and PD (n=10) in patients ages 65 years and older.⁴³ All were treated successfully, with decreases in Eckardt scores. At a mean follow-up of 21.8 months for POEM and 35 months for PD patients, 1 POEM case failed, and 2 PD procedures failed.

In a retrospective study of patients with type III achalasia, Kumbhari et al (2015) compared outcomes for 49 patients who underwent POEM across 8 centers between 2011 and 2013, and a

historical control group of 25 patients who underwent LHM between 2000 and 2013.²⁴ Defining clinical response as a reduction in Eckardt score of no more than 1, clinical response was more frequent in the POEM group (98.0%) than the LHM group (80.8%; $p=.01$). On multivariable analysis, there was no statistically significant difference in the odds of failure between procedures, although the point estimate of the odds favored POEM (OR, 11.32; $p=.06$). Procedure times were shorter with POEM. There was no difference in length of stay. The overall rate of adverse events was lower in the POEM group (6% vs. 27%, $p=.01$). However, an important limitation of this study is that LHM patients had more severe disease at baseline by several different measures (ie, higher Eckardt symptom stage, prior endoscopic interventions). Also, the LHM and POEM groups differed in the achalasia diagnostic criteria used, with the LHM group lacking use of the current gold standard of high-resolution esophageal manometry to diagnose type III because it was not yet available at that time.

Haseeb et al (2023) published a retrospective study using National Readmission Database data from 2016 to 2019 to compare short-term outcomes after POEM (n=1911) to LHM (n=9710) and PD (n=2453) in adults with achalasia.⁶³ The rate of readmissions was highest in patients treated with PD (12.6%), followed by POEM (4.3%) and LHM (3.9%). PD had significantly greater adjusted odds of readmission compared to POEM (OR, 2.42; 95% CI, 1.56 to 3.75), but no difference was identified between POEM and LHM (OR, 0.91; 95% CI, 0.62 to 1.33). No significant differences were detected in the rate of mortality, length of stay, or periprocedural adverse events between POEM and LHM. Compared to PD, POEM had a lower rate of mortality (0% vs 1.1%; $p=.012$), sepsis (1% vs. 2.3%; $p=.016$), blood transfusions (0.7% vs 2.3%; $p<.001$), and length of stay (3.4 days vs 6.29 days; $p<.001$).

Section Summary: Peroral Endoscopic Myotomy for Adult Individuals with Achalasia

Studies on POEM for adults with achalasia included systematic reviews, nonrandomized studies, and 4 RCTs. Conclusions on comparative efficacy cannot be determined from the systematic reviews because they did not appear to have accounted for differences in patient characteristics in the nonrandomized studies. Findings from RCTs demonstrated that POEM had a similar or greater treatment success rate based on the Eckardt score and similar or fewer adverse events compared with PD or LHM. However, POEM had significantly higher rates of endoscopically confirmed reflux esophagitis. An important conduct limitation of the RCTs is that blinded assessment of outcomes was not used. Given that the primary outcome was based on subjective patient report of symptoms, this is a potential source of bias. Additionally, a potential relevance limitation is that the RCTs did not include any US sites. The nonrandomized studies comparing POEM with other procedures were retrospective and involved patients who might not be comparable in terms of age and severity of the disease. Although outcomes were generally similar between POEM and the comparator treatments (LHM, PD), potential confounding and selection bias makes outcome comparisons uncertain. Long-term follow-up was available for 2 RCTs. Results from 1 RCT showed a greater rate of clinical success at 5 years for POEM patients compared to PD, but the POEM group also showed higher rates of PPI usage and GERD questionnaire scores. Five-year results from the other demonstrated non-inferiority between POEM and LHD in treatment success, although more patients had esophagitis and severe esophagitis at 5-years in the POEM group.

PERORAL ENDOSCOPIC MYOTOMY FOR PEDIATRIC INDIVIDUALS WITH ACHALASIA

Clinical Context and Therapy Purpose

The purpose of POEM in pediatric individuals who have esophageal achalasia is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The relevant population of interest is pediatric individuals with esophageal achalasia. Esophageal achalasia is characterized by reduced numbers of neurons in the esophageal myenteric plexuses and reduced peristaltic activity, making it difficult for individuals to swallow food and possibly leading to complications such as regurgitation, coughing, choking, aspiration pneumonia, esophagitis, ulceration, and weight loss.

Interventions

The therapy being considered is POEM. The POEM procedure involves tunneling an endoscope down the esophagus toward the esophageal-gastric junction. A surgeon performs the myotomy by cutting only the inner, circular LES muscles through a submucosal tunnel created in the proximal esophageal mucosa.

Comparators

Comparators of interest include esophageal dilation, LHM, and botulinum toxin injection.

Esophageal dilation is performed in a graded approach, starting with a small balloon (typically 30 mm), then progressing to larger balloons (35 to 40 mm) 2 to 4 weeks later. The balloons are placed at the level of the gastroesophageal junction and inflated slowly, in order to tear the muscle fibers in a controlled manner. Esophageal perforations are a potential complication. Long-term studies have estimated that approximately one-third of affected individuals may need a repeat procedure.

Heller laparoscopic myotomy is a minimally invasive procedure in which the thick muscle of the lower esophagus and the upper stomach is cut to open the tight LES. The procedure involves 5 small incisions to insert the camera and surgical instruments. Reported success rates are high (>90%), with a 5-year follow-up study showing an 8% rate of symptom recurrence.

Endoscopic botulinum toxin is injected with a sclerotherapy needle approximately 1 cm above the esophagogastric junction. The complication rate is low and approximately 80% of individuals experience immediate symptom relief. The effect diminishes over time, with more than 60% of individuals reporting recurrent symptoms at 1 year.

Outcomes

The general outcomes of interest are symptom relief and treatment-related morbidity.

Symptom relief may be measured by the Eckardt score, which is comprised of 4 major symptoms of achalasia: dysphagia, regurgitation, retrosternal pain, and weight loss. Each symptom receives a score from 0 (none) to 3 (severe), for a maximum score of 12. Total scores of 4 or greater represent treatment failure.¹²

A treatment-related morbidity of concern is the development of GERD. Gastroesophageal reflux disease risk is high with this procedure because POEM involves ablating the LES without adding any type of anti-reflux mechanism. Additional complications include thoracic effusion, subcutaneous emphysema, and esophagitis.

Symptom relief may be experienced shortly following the procedure. Duration of relief is measured after months to years of follow-up.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies;
- To assess long-term outcomes and adverse effects, single-arm studies that capture longer periods of follow-up and/or larger populations were sought;
- Studies with duplicative or overlapping populations were excluded.

REVIEW OF EVIDENCE

Systematic Reviews

Table 8 provides a crosswalk of trials included in relevant systematic reviews/meta-analyses.

Dimopoulos et al (2024) published a meta-analysis comparing LHM versus POEM in children with achalasia.⁶⁴ Thirty-two articles (N=800) were included in systematic review, although the meta-analysis was limited to the POEM results only. The mean difference in Eckardt score pre- and post-POEM was 4.387 (95% CI, 3.799 to 4.974; p<.001). There was also a significant difference in mean LES pressure pre- and post-POEM (mean difference, 3.63 mmHg; 95% CI, 2.247 to 3.879; p<.001). Unfortunately, due to heterogeneity amongst articles, the authors were not able to compare LHM to POEM in any meta-analysis.

Nabi et al (2023) published a meta-analysis pooling outcomes of POEM in pediatric achalasia. The review included 14 studies from 2010 to 2021 (N=419; 234 boys).⁶⁵ The mean age of patients ranged from 10.9 to 15.2 years with symptom duration of 6.3 to 30.1 months. Technical success occurred in 415 individuals with a pooled rate of 97.1% (95% CI, 94.5% to 98.5%; I^2 , 0%). A pooled clinical success rate in the intention-to-treat-analysis population was 88% (95% CI, 84.4% to 90.9%). The MD from baseline in Eckardt scores was available from 9 studies and was significantly different from baseline (MD, 6.71; 95% CI, 6.14 to 7.28; I^2 , 81%); however, this estimate had substantial heterogeneity. The overall pooled rate of any adverse event was 12.9% (95% CI, 7.4 to 21.7%, I^2 , 64.5%) and for major adverse events, the rate was 4.2% (95% CI, 2.4% to 7.4%). The authors concluded that POEM was a safe and effective modality for treating children with achalasia, but noted that prospective studies with longer-term follow-up and objective evaluation of gastroesophageal reflux are necessary.

Zhong et al (2021) published an updated systematic review and meta-analysis evaluating clinical outcomes of POEM for the treatment of achalasia in children.⁶⁶ The review included 11 studies published between January 2009 to June 2020 (N=389; 222 boys). The mean age of the patients ranged from 5.5 to 15.2 years with symptom duration ranging from 1.7 to 26.4 months. The

pooled technical success (completion of the POEM procedure successfully) was achieved in 385 children (97.4%; 95% CI, 94.7% to 98.7%) and the pooled clinical success (decrease in Eckhardt score to ≤ 3 during follow-up) was achieved in 343 children (92.4%; 95% CI, 89% to 94.8%). The Eckhardt score was significantly reduced by 6.76 points following POEM (95% CI, 6.18 to 7.34; $p < .00001$). Regarding adverse events, the pooled major adverse event rate was 12.8% (95% CI, 4.5% to 31.5%) with a pooled GERD rate of 17.8% (95% CI, 14.2% to 22%). The authors concluded that POEM was effective and safe for treating children with achalasia; however, all included studies in the analysis were observational in nature.

Lee et al (2019) published a systematic review and meta-analysis evaluating POEM for the treatment of pediatric achalasia.⁶⁷ Twelve studies, published between 2013 and 2018, with a total of 146 patients (53.68% female), were included in the analysis. There was a reduction in the Eckhardt score of 6.88 points (95% CI 6.28 to 7.48, $p < .001$) and a reduction in LES pressure of 20.73 mmHg (95% CI 15.76 to 25.70, $p < .001$). Improvement or resolution of short- and long-term achalasia symptoms was experienced in 93% of patients. The study was limited by several of the included studies being case series (5/12) with no control groups or comparators, all of the studies having a sample size of < 30 , and by most studies only reporting follow-up of ≤ 2 years.

Table 8. Comparison of Studies Included in Systematic Reviews and Meta-Analyses

Study	Lee et al (2019) ⁶⁷	Zhong et al (2021) ⁶⁶	Nabi et al (2023) ⁶⁵	Dimopoulou et al (2024) ⁶⁴
Alkhatrawi et al (2013)				●
Altokhais et al (2016)				●
Askegard-Gismann et al (2009)				●
Caldaro et al (2015)	●	●	●	●
Chen et al (2015)	●	●		●
Choné et al (2019)		●	●	●
Corda et al (2010)				●
Esposito et al (2000)				●
Esposito et al (2013)				●
Familiari et al (2013)	●			
Franklin et al (2014)				●
Garzi et al (2007)				●
Grabowski et al (2017)				●
Kethman et al (2018)	●	●		
Korrapati et al (2018)			●	
Li et al (2015)	●	●		●
Liu et al (2020)		●	●	●

Study	Lee et al (2019) ⁶⁷	Zhong et al (2021) ⁶⁶	Nabi et al (2023) ⁶⁵	Dimopoulou et al (2024) ⁶⁴
Mangiola et al (2018)	●		●	
Mattioli et al (2003)				●
Mehra et al (2001)				●
Miao et al (2018)	●	●		●
Nabi et al (2017)	●			●
Nabi et al (2019)		●	●	
Nabi et al (2022)				●
Nishimoto et al (2018)			●	
Pachl et al (2014)				●
Paidas et al (2007)				●
Patti et al (2002)				●
Peng et al (2022)				●
Petrosyan et al (2016)				●
Petrosyan et al (2022)				●
Rotenberg et al (2001)				●
Saez et al (2020)		●	●	●
Stavropoulos et al (2017)	●		●	
Tan et al (2016)	●	●	●	●
Tang et al (2015)	●	●	●	●
Tannuri et al (2010)				●
Waldhausen et al (1999)				●
Wood et al (2020)			●	●
Yamashita et al (2018)			●	
Zangen et al (2017)	●		●	

Nonrandomized Studies

Bi et al (2023) published a retrospective cohort study of POEM for the treatment of pediatric achalasia and compared pediatric patients to a 1:1 matched adult cohort on gender, operating physician, surgery date, and baseline Chicago and Ling classification between 2012 and 2020.⁶⁸ A total of 48 pediatric patients were included with a median age of 16 years (range 7 to 18 years of age). Most patients (75%) lacked prior treatment for achalasia. Fourteen patients were lost to follow-up, and a total of 34 pediatric patients were available for long-term follow-up.

with a mean of 5.7 years (range, 2.6 to 10.6 years). The clinical success rate, defined as a post-POEM Eckhardt score of <3, was 97%. Pediatric patients had significant improvements between pre- and post-POEM for Eckhardt score (8 vs 1.1, $p < .001$), Urbach score (24.7 vs 12.8, $p < .001$), dysphagia, regurgitation, chest pain, and weight loss ($p < .001$). In addition, the number of absences from school decreases from a median of 3.3 months versus 0.1 months post-POEM ($p < .001$). Adverse events reported in the pediatric group following POEM at 5 years included symptomatic reflux (17.6%), reflux esophagitis (5.9%), and clinical reflux (11.8%); all adverse events were controlled with medical therapy. Compared to a matched adult cohort ($n = 34$), pediatric patients had identical rates of complications post-treatment (14.6%), similar rates of clinical success, changes in Eckardt and Urbach scores, clinical reflux evaluations, and procedure times.

Petrosyan et al (2022) conducted a retrospective study of all patients who underwent POEM for pediatric achalasia from 2015 to 2021 at a single center.⁶⁹ A total of 37 children (mean age, 11.6 years) were treated; 43.2% had a pre-POEM intervention for achalasia. Participants were followed for a median of 15 months (range 5.5 to 74 months) following POEM. Baseline Eckhardt scores were 6.73 (standard deviation ± 1.5), and following POEM, scores decreased to a mean of 0.6 ± 0.9 . One patient failed POEM (2.7%). The reintervention rate was 16.2% (5 patients required PD and 1 patient required LHM). Intraoperative complications occurred in 16 (43.2%) patients; however, these complications did not require reoperation during index admission. Intraoperative complications included mucosectomy distal to submucosal tunnel entry (13.5%), pneumothoraxes (24.3%), pneumomediastinum (5.4%), pneumoperitoneum (27%). Post-operative complications were recurrent dysphagia (13.5%) and GERD (8.1%).

Nabi et al (2019) published a retrospective study assessing POEM for the treatment of children with achalasia.⁷⁰ Forty-four patients ≤ 18 years old and weighing ≥ 10 kg who were diagnosed with achalasia between 2013 and 2018 were included. POEM was successfully performed in 43 patients (technical success 97.72%). Eleven (25.6%) children experienced intra-operative adverse events, including retroperitoneal carbon dioxide ($n = 7$), capnoperitoneum ($n = 3$), and mucosal injury ($n = 1$). Clinical success at 1, 2, 3, and 4 years of follow-up was 92.8%, 94.4%, 92.3%, and 83.3%, respectively. The study was limited by its retrospective design, the lack of confirmation of GERD in about half the patients, and the small number of patients who completed 3 or more years of follow-up.

Miao et al (2017) published a retrospective, single-center study of POEM for the treatment of pediatric achalasia.⁷¹ Twenty-one children (aged 11 months to 18 years) diagnosed with achalasia and treated between 2014 and 2016 were included. Mean follow-up time was 13.2 months. No severe adverse events were reported, and for all patients, difficulty in feeding or swallowing was significantly alleviated or resolved. By 1 month after POEM, all Eckardt scores were <3 and by 6 months were 0.75 on average (average pre-operative score: 7.18; $p < .001$). At 6 months, an average weight gain of 2.7 kg was observed. Four patients had gastroesophageal reflux and 2 had concomitant gastroesophageal reflux and reflux esophagitis at 3 months follow-up. No limitations to the study were reported.

Section Summary: Peroral Endoscopic Myotomy for Pediatric Individuals with Achalasia

Four systematic reviews and meta-analyses evaluating POEM for the treatment of pediatric achalasia were identified. A significant decrease was observed in both Eckardt scores and LES

pressure, as well as improvement in symptoms; however, no RCTs were included and the majority of included studies had sample sizes <30. Four comparative observational studies were available evaluating POEM for the treatment of pediatric achalasia. All four studies reported high rates of success for POEM and alleviation of achalasia symptoms. One study retrospectively compared POEM in pediatric patients to a matched adult cohort and found similar rates of clinical success, clinical reflux symptoms, and adverse events.

GASTRIC PERORAL ENDOSCOPIC MYOTOMY FOR ADULT INDIVIDUALS WITH GASTROPAESIS

Clinical Context and Therapy Purpose

The purpose of gastric peroral endoscopic myotomy (G-POEM) in individuals who have gastroparesis is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The relevant population of interest is individuals with gastroparesis. Gastroparesis is characterized by nausea, vomiting, bloating, early satiety, with or without abdominal pain which is caused by delayed gastric emptying without any mechanical obstruction.

Interventions

The therapy being considered is G-POEM. The G-POEM procedure involves tunneling an endoscope down the esophagus toward the esophageal-gastric junction. A surgeon performs the myotomy by cutting the pylorus muscles through a submucosal tunnel created in the proximal esophageal mucosa.

Comparators

Comparators of interest include sham control, medical management with metoclopramide or antiemetics, gastric electrical stimulation, and botulinum toxin injection.

Anti-emetic drugs can provide symptom relief to individuals for whom dietary modifications are insufficient to alleviate symptoms. Metoclopramide is a prokinetic medication that has been approved by the US Food and Drug Administration (FDA) for the treatment of gastroparesis; it is usually taken 15 minutes before a meal 5 times per day and is approved for 12 weeks of treatment due to the potential for adverse effects (anxiety, restlessness, hyperprolactinemia, and QT prolongation).

Gastric electrical stimulation is a non-pharmacologic approach to relieve some symptoms of gastroparesis, chiefly vomiting and the need for nutritional support. Individuals with gastroparesis who do not respond to medical management may consider gastric electrical stimulation as an FDA-approved therapy under a humanitarian device exemption. The device needs implantation of a pair of leads which is done via laparotomy or laparoscopically in the muscularis propria proximal to the pylorus which is then connected to a pulse generator. Risks include infection of the device, risk of lead migration, perforation, and battery replacement, which may necessitate additional procedures.

Botulinum toxin is administered endoscopically as an intrapyloric injection under direct visualization using a sclerotherapy needle, delivering 20 to 25 U botulinum neurotoxin/mL into each of the four quadrants. Individuals are usually discharged on the same day with dietary advancement as tolerated, and an endoscopic ultrasonography-guided approach can enhance precision in targeting the pyloric sphincter.

Outcomes

The general outcomes of interest are symptom relief and treatment-related morbidity.

Symptom relief may be measured by the Gastroparesis Cardinal Symptom Index (GCSI), which is comprised of 3 major symptoms of gastroparesis: postprandial fullness/early satiety (4 items), nausea/vomiting (3 items), and bloating (2 items). Each item receives a score from 0 (none) to 5 (severe), for a maximum score of 45. An average GCSI score of ≥ 3 is defined as severe gastroparesis.⁷²

Treatment-related morbidity of concern is infection, ulcers near the pylorus, bleeding or tears in the gastric mucosa.

Symptom relief may be experienced shortly following the procedure. Assessment of durability of relief requires a follow-up of months to years.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies;
- To assess long-term outcomes and adverse effects, single-arm studies that capture longer periods of follow-up and/or larger populations were sought;
- Studies with duplicative or overlapping populations were excluded.

REVIEW OF EVIDENCE

Systematic Reviews

Two systematic reviews and meta-analyses evaluating G-POEM for the treatment of gastroparesis were identified.^{73,74} Both reviews included only observational studies of G-POEM for gastroparesis in adult patients. Outcome data was reported up to 1-year post-treatment in the study by Kamal et al (2022) and up to 3 years post-treatment in the study by Canakis et al (2023). Clinical success was found to be 60.7% (95% CI, 49.1% to 71.2%) at 1 year with high heterogeneity pooling data from 8 studies. Pooled clinical success rates at 3 years follow-up across 4 studies was 75% (95% CI, 68.2% to 80.5%) with low heterogeneity. Following G-POEM, mean GCSI scores decreased by -1.44 (95% CI, -1.91 to -0.97) at 1 year post-treatment in 7 studies and by -3.3 (95% CI, -1.8 to -4.7) in 4 studies at 3-years follow-up; both estimates had very high heterogeneity between studies. One study reported a pooled rate of adverse events at 1-year follow-up of 8.2% and the other meta-analysis reported strata of events (bleeding, perforation, pain or other) which ranged from 0.7% to 4.1% at 3-years following G-POEM. Tables 9 through 11 describe the studies included, characteristics, and results of the meta-analyses.

Table 9. Comparison of Studies of G-POEM Included in Meta-Analysis

Study	Kamal et al (2022) ⁷³ ,	Canakis et al (2023) ⁷⁴ ,
Labond et al (2022) ⁷⁵ ,		●
Hernandez-Mondragon et al (2022) ⁷⁶ ,		●
Vosoughi et al (2021) ⁷⁷ ,	●	
Gregor et al (2021) ⁷⁸ ,	●	
Conchillo et al (2020) ⁷⁹ ,	●	
Abdelfatah et al (2021) ⁸⁰ ,	●	●
Hustak et al (2020) ⁸¹ ,	●	
Tan et al (2021) ⁸² ,	●	
Attaar et al (2021) ⁵⁶ ,	●	
Ragi et al (2020) ⁸³ ,	●	
Shen et al (2020) ⁸⁴ ,		●
Vosoughi et al (2020) ⁸⁵ ,	●	
Xu et al (2018) ⁸⁶ ,	●	
Davis et al (2017) ⁸⁷ ,		●

G-POEM: gastric peroral endoscopic myotomy.

Table 10. Meta-Analysis Characteristics

Systematic Review	Dates	Included Studies	Participants	N (Range)	Design	Duration
Kamal et al (2023) ⁷³ ,	Through June 2021	10	Adults with gastroparesis treated with G-POEM	482 (9 to 97)	7 retrospective 3 prospective	Minimum follow-up of 1 year
Canakis et al (2023) ⁷⁴ ,	Through March 2023	5	Adults with gastroparesis treated with G-POEM	560 (23 to 374)	3 retrospective 2 prospective	Minimum follow-up of 3 years

G-POEM: gastric peroral endoscopic myotomy.

Table 11. Meta-Analysis Results

Systematic Review	Clinical Success	Technical Success	Pre and Post G-POEM GCSI	Length of Hospital Stay (days)	Adverse Events
Kamal et al (2023) ⁸⁸ , all results at 1 year f/u					
N studies	8		7		8
Pooled effect (95% CI)	60.7% (49.1% to 71.2%) I ² : 74%		SMD: -1.44 (-1.91 to -0.97) I ² : 97%		8.2% (5.9% to 11.4%), I ² : 0%
Canaklis et al (2023) ⁷⁴ , all results at 3 years f/u					
N studies	4	5	4	4	3 to 4 per event
Pooled effect (95% CI)	75% (68.2% to 80.5%) I ² : 20%	98.6% (91% to 99.8%) I ² : 70%	SMD: -3.3 (-1.8 to -4.7) I ² : 94%	SMD 3.06 (2.6 to 3.5%) I ² : 91%	Perforation: 0.7% (0.2% to 2.4%), I ² : 0% Bleeding: 4.1% (2.7% to 6.3%), I ² : 0% Pain: 0.9% (0.3% to 3.1%), I ² : 0% Other (clip dislodgement, pre-pyloric ulcer, or mucosal tear): 3.4% (2.1% to 5.5%), I ² : 0%

CI: confidence interval; f/u: follow-up; GCSI: gastroparesis cardinal symptom index; G-POEM: gastric peroral endoscopic myotomy; SMD: standardized mean difference.

Randomized Controlled Trials

Gonzalez et al (2024) conducted a French multi-center RCT (N=40 patients) comparing the clinical efficacy of G-POEM versus pyloric botulinum toxin injection for refractory gastroparesis.⁸⁹ Patients were medically managed for >6 months and confirmed by gastric emptying scintigraphy (GES), with follow-up of 1 year. The primary end point was the 3-month clinical efficacy, defined as a >1-point decrease in the mean GCSI score. Secondary end points were: 1-year efficacy, GES evolution, adverse events, and quality of life. G-POEM showed a trend towards higher 3-month clinical success than botulinum toxin, along with non-significantly higher 1-year clinical success on intention-to-treat analysis (Table 13). The GCSI decreased in both groups at 3 months and 1 year. Only 3 minor adverse events occurred in the G-POEM group. The GES improvement rate was 72% in the G-POEM group versus 50% in the botulinum toxin group (non-significant).

Martinek et al (2022) published a randomized, multi-center trial that compared G-POEM to sham treatment in patients with gastroparesis.⁹⁰ From November 2017 to February 2021 a total of 41 participants were recruited who were randomized 1:1 to either G-POEM (n=21) or sham control (n=20) (Table 12); 1 individual in the sham control group withdrew consent and 1 participant in

the G-POEM group could not have the procedure completed due to submucosal fibrosis and were not included in the per-protocol analysis. The median age of patients in the G-POEM arm was 43 years (range, 30 to 51 years) and was 51 years (range, 45 to 56 years) in the sham control group. Participants in the G-POEM group had a higher baseline GCSI score of 3.5 compared to 3.2 in the sham control group.

Treatment success ($\geq 50\%$ reduction in GCSI score) at 6 months post-intervention occurred in 15 (71%) of the G-POEM patients in the intention to treat (ITT) analysis and 14 (70%) in the per-protocol analysis compared with 21% or 22% in the sham control group. Twelve patients crossed over to G-POEM and 9 (75%) had treatment success 6 months after crossing over. At 6 months follow-up the median reduction in GCSI score favored G-POEM over sham control (Table 13); in the patients that crossed over from sham control to G-POEM, an additional median reduction in GCSI of 0.3 (95% CI, 0.1 to 1.6) was observed 6 months from the time of crossing over. The authors found that gastric retention decreased significantly after G-POEM compared to sham control and that after crossing over from sham to G-POEM, a similar effect was observed in the cross-over patients. A sub-group analysis showed a greater level of treatment effect in patients with a diabetic etiology of gastroparesis over post-surgical or idiopathic etiologies.

Table 12. Summary of Key RCT Characteristics

Study	Countries	Sites	Dates	Participants	Interventions	
					Active	Comparator
Gonzalez et al (2024) ⁸⁹	France	2	2017-2020	Adults with refractory gastroparesis, medically managed for >6 months and confirmed by gastric emptying scintigraphy	G-POEM (n=20)	Botulinum toxin injection (n=20)
Martinek et al (2022) ⁹⁰	Czech Republic	2	2017-2021	Adults with severe gastroparesis with a Gastroparesis Cardinal Symptom Index score of >2.3 and who were refractory for >6 months	G-POEM (n=21)	Sham (n=20)

G-POEM: gastric peroral endoscopic myotomy; RCT: randomized controlled trial.

Table 13. Summary of Key RCTs Results

Study	Clinical efficacy at 3 months, n (%)	GCSI mean change at 3 months, mean (SD)	Clinical efficacy at 1 year, n (%)	GCSI mean change at 12 months, mean (SD)
Gonzalez et al (2024) ⁸⁹	40	40	40	40
G-POEM	ITT: 13 (65%)	1.5 (1.2)	ITT: 12 (60%)	1.2 (1.1)
Botulinum toxin injection	ITT: 8 (40%)	1.2 (1.2)	ITT: 8 (40%)	0.9 (1.1)
Comparative treatment effect (95% CI)	(95% CI -0.16 to 0.48; p=0.10)	p=0.32 (NR)	(95% CI -0.30 to 0.62; p=0.62)	(NR)

Study	Clinical efficacy at 3 months, n (%)	GCSI mean change at 3 months, mean (SD)	Clinical efficacy at 1 year, n (%)	GCSI mean change at 12 months, mean (SD)
			0.40; p=0.20)	
			Median Quality of Life Index, change from BL at 3 mos	
	Treatment success, n (%)	Median GCSI, (95% CI)		Treatment-related SAE
Martinek et al (2022) ⁹⁰	41	41	41	41
G-POEM	ITT: 15 (71%) PP: 14 (70%)	BL: 3.5 (3.2 to 3.7) 3 mos: 1.4 (0.9 to 1.9) 6 mos: 1.1 (0.5 to 1.5)	1.1 (0.1 to 1.6)	7*
Sham	ITT: 4 (22%) PP: 4 (21%)	BL: 3.2 (2.8 to 3.4) 3 mos: 2.5 (1.9 to 3.1) 6 mos: 2.5 (1.9 to 3.2)	0.4 (-0.1 to 0.8)	3
Comparative treatment effect (95% CI)	OR: 9.0 (95% CI: 2 to 40.2)	2.4 (2.0 to 2.8) vs 0.7 (0 to 1.2) at 6 mos		

* 5 events occurred in the initial group and then 2 occurred after patients in the sham group crossed over; 3 events were related to the G-POEM procedure.

BL: baseline; CI: confidence interval; G-POEM: gastroparesis peroral endoscopic myotomy; GCSI: gastroparesis cardinal symptom index; ITT: intention to treat; NR: not reported; OR: odds ratio; PP: per protocol; RCT: randomized controlled trial; SAE: severe adverse event.

Tables 14 and 15 summarize the important limitations of the RCTs discussed above.

Table 14. Study Relevance Limitations

Study	Population ^a	Intervention ^b	Comparator ^c	Outcomes ^d	Follow-Up ^e
Gonzalez et al (2024) ⁸⁹ ,	4. Non-US		2. Does not include sham procedure	1. Quality-of-life assessment was limited due to absence of interpretable data	
Martinek et al (2022) ⁹⁰ ,	4. Non-US		1. Sham procedure is not clearly defined, and no assessment of the adequacy of blinding		1. Follow-up is limited to 6 months where patients in the control group were eligible to cross-over

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

^a Population key: 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.

^b Intervention key: 1. Not clearly defined; 2. Version used unclear; 3. Delivery not similar intensity as comparator; 4. Not the intervention of interest.

^c Comparator key: 1. Not clearly defined; 2. Not standard or optimal; 3. Delivery not similar intensity as intervention; 4. Not delivered effectively.

^d Outcomes key: 1. Key health outcomes not addressed; 2. Physiologic measures, not validated surrogates; 3. No CONSORT reporting of harms; 4. Not establish and validated measurements; 5. Clinical significant difference not prespecified; 6. Clinical significant difference not supported.

^e Follow-Up key: 1. Not sufficient duration for benefit; 2. Not sufficient duration for harms.

Table 15. Study Design and Conduct Limitations

Study	Allocation ^a	Blinding ^b	Selective Reporting ^c	Follow-Up ^d	Power ^e	Statistical ^f
Gonzalez et al (2024) ⁸⁹ ,					3. Sample size was insufficient to have enough power to demonstrate any potential difference between study groups	3. Inadequate statistical analysis and reporting 4. Comparative treatment effects not calculated for all study outcomes
Martinek et al (2022)Martinek et al (2022) ⁹⁰ ,			6. Per protocol analysis for some outcomes	6. Follow-up insufficient to define long-term effects	5. Trial terminated for success prior to recruiting # of participants specified in protocol	3. Inadequate statistical analysis and reporting

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

^a Allocation key: 1. Participants not randomly allocated; 2. Allocation not concealed; 3. Allocation concealment unclear; 4. Inadequate control for selection bias.

^b Blinding key: 1. Not blinded to treatment assignment; 2. Not blinded outcome assessment; 3. Outcome assessed by

treating physician.

^c Selective Reporting key: 1. Not registered; 2. Evidence of selective reporting; 3. Evidence of selective publication.

^d Follow-Up key: 1. High loss to follow-up or missing data; 2. Inadequate handling of missing data; 3. High number of crossovers; 4. Inadequate handling of crossovers; 5. Inappropriate exclusions; 6. Not intent to treat analysis (per protocol for noninferiority trials).

^e Power key: 1. Power calculations not reported; 2. Power not calculated for primary outcome; 3. Power not based on clinically important difference.

^f Statistical key: 1. Intervention is not appropriate for outcome type: (a) continuous; (b) binary; (c) time to event; 2. Intervention is not appropriate for multiple observations per patient; 3. Confidence intervals and/or p values not reported; 4. Comparative treatment effects not calculated.

Nonrandomized Studies

Numerous nonrandomized single-arm studies have been published many of which are included in the 2 meta-analyses discussed above.^{75,76,77,78,79,80,81,82,83,84,85,86,87} This section will focus on the largest of these studies which also provides long-term efficacy outcomes through 4 years follow-up.

Hernandez-Mondragon et al (2022) retrospectively analyzed data from a prospective cohort of adult refractory gastroparesis patients (N=374) collected at a single center from 2017 to 2021.⁷⁶ Patients were followed for 4 years and evaluated at baseline and then following G-POEM at 1 month, 6 months and every 6 months thereafter through 48 months. The technical success of the procedure was 100% with an average hospital length of stay of 2 days. Prior to treatment with G-POEM, the mean GCSI score was 3.84 ± 0.53 which was significantly reduced to 2.1 ± 0.7 ($p < .001$) at 4 years follow-up ($n=102$). The clinical success rate was 77.5% at 4 years follow-up. Adverse events occurred in 8.6% of patients and were all managed conservatively or treated endoscopically. Twelve patients (3.2%) had a treatment failure with G-POEM and 72 (19.2%) had a recurrence of gastroparesis symptoms. Patients were stratified by the etiology of their gastroparesis for the purposes of subgroup analyses: 141 patients (37.7%) had diabetic gastroparesis, 115 (30.7%) had idiopathic gastroparesis, 102 (27.3%) had postsurgical gastroparesis, and 16 (4.3%) had another etiology. Between group comparisons based on etiology showed variations in the rate of recurrence (with diabetic etiology having a lower rate) as well as in the rate of final clinical success (with diabetic etiology showing a significantly greater rate of success than idiopathic, postsurgical, or other etiologies of gastroparesis [$p < .01$]).

Section Summary: Gastric Peroral Endoscopic Myotomy for Gastroparesis

Two systematic reviews and meta-analyses evaluating G-POEM for the treatment of gastroparesis were identified. Pooled rates of clinical success were 60.7% at 1 year and 75% at 3 years following G-POEM with significant reductions in GCSI scores at 1 and 3 years post-treatment. All studies included in these reviews were observational. One RCT demonstrated a notably higher success rate and improvement in gastric retention for G-POEM compared to a sham control group, with the most significant benefit observed in patients with diabetic gastroparesis. Another RCT indicated a trend towards superior 3-month clinical outcomes for POEM over botulinum toxin injection, although the 1-year clinical success rate on intention-to-treat analysis was not significantly higher.

SUPPLEMENTAL INFORMATION

The purpose of the following information is to provide reference material. Inclusion does not imply endorsement or alignment with the evidence review conclusions.

Practice Guidelines and Position Statements

Guidelines or position statements will be considered for inclusion in 'Supplemental Information' if they were issued by, or jointly by, a US professional society, an international society with US representation, or National Institute for Health and Care Excellence (NICE). Priority will be given to guidelines that are informed by a systematic review, include strength of evidence ratings, and include a description of management of conflict of interest.

American College of Gastroenterology

In 2020, the American College of Gastroenterology (ACG) issued evidence-based clinical guidelines on the diagnosis and management of achalasia.⁹¹ The quality of the evidence and the strength of recommendations were rated based on the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework. The evidence review includes the 2 randomized controlled trials (RCTs) of peroral endoscopic myotomy (POEM) compared to laparoscopic Heller myotomy (LHM) or pneumatic dilation (PD). Based on their evaluation, the ACG made the following recommendations:

- "In patients with achalasia who are candidates for definite therapy, PD, LHM, and POEM are comparable effective therapies for type I or type II achalasia and POEM would be a better treatment option in those with type III achalasia."
- "We suggest that POEM or PD result in comparable symptomatic improvement in patients with types I or II achalasia." (GRADE quality=Low, Recommendation strength=Conditional)
- "We recommend that POEM and LHM result in comparable symptomatic improvement in patients with achalasia." (GRADE quality=Moderate; Recommendation strength=Strong)
- "We recommend tailored POEM or LHM for type III achalasia as a more efficacious alternative disruptive therapy at the lower esophageal sphincter compared to PD." (GRADE quality=Moderate; Recommendation strength=Strong)
- "We suggest that in patients with achalasia, POEM compared with LHM with fundoplication or PD is associated with a higher incidence of GERD [gastroesophageal reflux disease]." (GRADE quality=Moderate; Recommendation strength=Strong)
- "We suggest that POEM is a safe option in patients with achalasia who have previously undergone PD or LHM." (GRADE quality=Low; Recommendation strength=Strong)

In 2022, the ACG issued evidence-based guidelines on gastroparesis.⁹² The guideline states that the efficacy of gastric POEM (G-POEM) is based on observational studies and that "overall, these open-label studies suggest there is benefit in terms of symptom improvement and improved GE [gastric emptying], though most studies were of only 3 to 6 months' duration."

American Gastroenterological Association Institute

In 2017, the American Gastroenterological Association (AGA) Institute published a clinical practice update on the use of POEM for the treatment of achalasia.⁸⁸ Based on the expert review, the Institute made the following recommendations:

- POEM should be performed by experienced physicians in high-volume centers (competence achieved after an estimated 20 to 40 procedures)
- If expertise is available, POEM should be considered primary therapy for type III achalasia
- If expertise is available, POEM should be considered comparable to Heller myotomy for any achalasia syndromes

- Patients receiving POEM should be considered high-risk to develop reflux esophagitis and be advised of management considerations (eg, proton pump inhibitor therapy and/or surveillance endoscopy) prior to undergoing POEM.

In 2024, AGA published an expert review that acted as a clinical practice update on advances in POEM.⁹³ Related to achalasia, the following best practice statements were made:

- POEM, laparoscopic Heller myotomy, and pneumatic dilation are effective therapies for type I and type II achalasia; the decision between these treatment modalities should be based on shared decision making, taking into account patient and disease characteristics, patient preferences, and local expertise. POEM should be considered the preferred treatment for type III achalasia.
- All patients should undergo monitoring for gastroesophageal reflux disease (GERD) after POEM. Patients with persistent esophagitis and/or reflux-like symptoms despite proton pump inhibitor use, should undergo additional testing to evaluate for other etiologies besides pathologic acid exposure and management to optimize and achieve reflux control.
- Long-term postprocedure surveillance is encouraged to monitor for progression of disease and complications of gastroesophageal reflux disease.
- POEM may be superior to pneumatic dilation for patients with failed initial POEM or laparoscopic Heller myotomy; however, the decision among treatment modalities should be based on shared decision making between the patient and physician, taking into account risk of postprocedural reflux, need for repeat interventions, patient preferences, and local expertise.

In 2023, the AGA Institute issued a clinical practice update commentary regarding gastric peroral endoscopic myotomy for gastroparesis.⁹⁴ Based on an expert review the following recommendations were provided:

- G-POEM, also called peroral endoscopic pyloromyotomy, should be considered for patients with medically refractory gastroparesis who
 - 1) Have undergone esophagogastroduodenoscopy to confirm no mechanical gastric outlet obstruction
 - 2) had a solid phase gastric emptying scan (GES) confirming delayed gastric emptying, preferably with retention >20% at 4 hours
 - 3) have moderate to severe symptoms including nausea and vomiting as the dominant symptoms on the gastroparesis cardinal symptom index
 - Patients who have failed gastric electrical stimulator therapy, pyloric stenting and botulinum toxin injection should be offered G-POEM but failure of these alternatives therapies should not be a prerequisite.
- G-POEM should not be offered to the following patients:
 - Patients with opioid dependence should be weaned off opioids whenever possible and have their gastric emptying re-evaluated.
 - Most patients with postinfectious gastroparesis should not be offered G-POEM
- G-POEM should only be performed by interventional endoscopists with expertise or training in third-space endoscopy

- Patients should remain on a liquid diet for at least 24 hours before G-POEM to minimize residual gastric contents
- A high-definition gastroscope, with a waterjet, affixed with a clear distal cap, should be used to perform G-POEM. And a modern electrosurgical generator capable of modulating power based on tissue resistance and circuit impedance is necessary for G-POEM.

In 2025, AGA issued a clinical practice guideline on the management of gastroparesis.⁹⁵ Related to G-POEM, the authors stated that in patients with gastroparesis refractory to medical therapy, they suggest against the routine use of G-POEM (strength of recommendation: conditional, certainty of evidence: low). As caveats to this recommendation, they state that patients and clinicians who place a higher value on the potential improvement in symptoms and lower value on the potential risk of adverse events may reasonably select to undergo G-POEM. The considerations they state should be incorporated into decision making are the same as those made in the expert commentary in 2023.

American Society of Gastrointestinal Endoscopy

In 2020, the American Society of Gastrointestinal Endoscopy (ASGE) issued an evidence-based guideline on the management of achalasia.⁹⁶ The methodologic quality of systematic reviews was assessed using the Methodological Quality of Systematic Reviews-2 (AMSTAR-2) tool and the certainty of the body of evidence was rated as very low to high based on the GRADE framework. ASGE rated the strength of individual recommendations based on the aggregate evidence quality and an assessment of the anticipated benefits and harms. ASGE used the phrase "we suggest" to indicate weaker recommendations and "we recommend" to indicate stronger recommendations. This guideline did not include either of the 2 available RCTs of POEM. Based on their evaluation, ASGE issued the following recommendations:

- "We suggest POEM as the preferred treatment for management of patients with type III achalasia." (Very low quality evidence)
- "In patients with failed initial myotomy (POEM or laparoscopic Heller myotomy), we suggest PD or redo myotomy using either the same or an alternative myotomy technique (POEM or laparoscopic Heller myotomy)." (Very low quality evidence)
- "We suggest that patients undergoing POEM are counseled regarding the increased risk of postprocedure reflux compared with PD and laparoscopic Heller myotomy. Based on patient preferences and physician expertise, postprocedure management options include objective testing for esophageal acid exposure, long-term acid suppressive therapy, and surveillance upper endoscopy." (Low quality evidence)
- "We suggest that POEM and laparoscopic Heller myotomy are comparable treatment options for management of patients with achalasia types I and II, and the treatment option should be based on shared decision-making between the patient and provider." (Low quality evidence)

These 2020 ASGE guidelines were endorsed by the American Neurogastroenterology and Motility Society and the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES).

International Society for Diseases of the Esophagus

In 2018, the International Society for Diseases of the Esophagus published guidelines on the diagnosis and management of achalasia.⁹⁷ The Society convened 51 experts from 11 countries, including several from the U.S., to systematically review evidence, assess recommendations using

the GRADE system, and vote to integrate the recommendations into the guidelines (>80% approval required for inclusion). Table 16 summarizes POEM recommendations.

Table 16. Recommendations for the Treatment of Achalasia

Recommendation	LOR	GOR
POEM is an effective therapy for achalasia both in short- and medium-term follow-up with results comparable to Heller myotomy.	Conditional	Very low
POEM is an effective therapy for achalasia both in short- and medium-term follow-up with results comparable to PD.	Conditional	Low
Pretreatment information on GERD, nonsurgical options (PD), and surgical options with lower GERD risk (Heller myotomy) should be provided to the patient.	Good practice	NA
POEM is feasible and effective for symptom relief in patients previously treated with endoscopic therapies.	Conditional	Very low
POEM may be considered an option for treating recurrent symptoms after laparoscopic Heller myotomy.	Conditional	Low
Appropriate training (in vivo/in vitro animal model) and proctorship should be considered prior to a clinical program of POEM.	Good practice	NA

GERD: gastroesophageal reflux disease; GOR: grade of recommendation; LOR: level of recommendation; NA: not applicable; PD: pneumatic dilation; POEM: peroral endoscopic myotomy.

Society of American Gastrointestinal and Endoscopic Surgeons

In 2020, SAGES endorsed the guideline on the management of achalasia issued by ASGE (2020) as described above.⁹⁶

In 2021, SAGES issued its own evidence-based guidelines for the use of POEM for the treatment of achalasia.⁹⁸ The expert panel agreed on 4 recommendations for adults and children with achalasia. These include:

- The panel suggests that adult and pediatric patients with type I and II achalasia may be treated with either POEM or LHM based on surgeon and patient's shared decision making (conditional recommendation; very low certainty evidence).
- The panel suggests POEM over LHM for type III adult or pediatric achalasia. (expert opinion)
- The panel recommends POEM over PD in patients with achalasia (strong recommendation, moderate certainty evidence)
- For the subgroup of patients who are particularly concerned about the continued use of proton pump inhibitors (PPIs) post-operatively, the panel suggests that either POEM or PD can be used based on joint patient and surgeon decision-making (conditional recommendation, very low certainty evidence)

An update to these guidelines was released in 2024.⁹⁹ The following recommendations were made within the guideline:

- "The Guideline panel suggests that adult patients with type I and II achalasia may be treated with either POEM with appropriate use of PPI or laparoscopic Heller myotomy with fundoplication based on surgeon and patient shared decision-making. (conditional recommendation, low certainty of evidence).
- The panel suggests POEM over laparoscopic Heller myotomy for type III adult achalasia. (expert opinion).

- The panel suggests consideration of routine upper endoscopy in both groups to detect the possibility of the asymptomatic patient with significant reflux who could be at risk of adenocarcinoma. The panel also notes an absence of data on this topic and emphasizes the importance of further research to determine exact timing and protocols. The symptomatic patient should undergo appropriate work-up for objective diagnosis of GERD before treatment. (expert opinion).
- The Guideline panel suggests Peroral endoscopic myotomy over pneumatic dilatation (conditional recommendation, moderate certainty of evidence)."

U.S. Preventive Services Task Force Recommendations

Not applicable.

Ongoing and Unpublished Clinical Trials

Some currently ongoing and unpublished trials that might influence this review are listed in Table 17.

Table 17. Summary of Key Trials

NCT No.	Trial Name	Planned Enrollment	Completion Date
<i>Ongoing</i>			
NCT01793922	A Prospective Randomized Multi-center Study Comparing Endoscopic Pneumodilation and Per Oral Endoscopic Myotomy (POEM) as Treatment of Idiopathic Achalasia	150	Jan 2025
NCT04434781	Gastric Per-Oral Endoscopic Myotomy (G-POEM) for the Treatment of Gastroparesis: A Database Repository	75	Aug 2026
NCT05830994	Randomized Sham-controlled Trial Investigating Efficacy of Gastric Peroral Endoscopic Myotomy in Treatment of Diabetic Gastroparesis	20	Jun 2025
NCT02518542	Per Oral Endoscopic Myotomy (POEM) and Prolonged Dilatation (PRD) as Additional Endoscopic Treatment Options for Achalasia and Other Esophageal Motility Disorders	400	Jun 2027
<i>Unpublished</i>			
NCT01832779	Prospective Evaluation of the Clinical Utility of Peroral Endoscopic Myotomy (POEM)	143	May 2024 (last update posted Oct 2024)
NCT03228758	Efficacy of Anterior Versus Posterior Myotomy Approach in Peroral Endoscopic Myotomy (POEM) for the Treatment of Achalasia - a Single Operator Analysis	89	May 2019 (last update posted May 2020)
NCT04869670	A Pilot and Feasibility Trial of G-POEM for Gastroparesis to Assess Safety, Physiological Mechanisms and Efficacy	2	Mar 2025

NCT: national clinical trial.

CODING

The following codes for treatment and procedures applicable to this policy are included below for informational purposes. This may not be a comprehensive list of procedure codes applicable to this policy.

Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

The code(s) listed below are medically necessary ONLY if the procedure is performed according to the "Policy" section of this document.

CPT/HCPCS	
43497	Lower esophageal myotomy, transoral (ie, peroral endoscopic myotomy [POEM])
43499	Unlisted procedure, esophagus (use for G-POEM: no specific code)
43999	Unlisted procedure, stomach.

REVISIONS	
02-04-2026	Policy added to the bcbks.com web site.

REFERENCES

1. Gaber CE, Eluri S, Cotton CC, et al. Epidemiologic and Economic Burden of Achalasia in the United States. *Clin Gastroenterol Hepatol*. Feb 2022; 20(2): 342-352.e5. PMID 33652152
2. Cheatham JG, Wong RK. Current approach to the treatment of achalasia. *Curr Gastroenterol Rep*. Jun 2011; 13(3): 219-25. PMID 21424734
3. Pandolfino JE, Kahrilas PJ. Presentation, diagnosis, and management of achalasia. *Clin Gastroenterol Hepatol*. Aug 2013; 11(8): 887-97. PMID 23395699
4. Yaghoobi M, Mayrand S, Martel M, et al. Laparoscopic Heller's myotomy versus pneumatic dilation in the treatment of idiopathic achalasia: a meta-analysis of randomized, controlled trials. *Gastrointest Endosc*. Sep 2013; 78(3): 468-75. PMID 23684149
5. Inoue H, Minami H, Kobayashi Y, et al. Peroral endoscopic myotomy (POEM) for esophageal achalasia. *Endoscopy*. Apr 2010; 42(4): 265-71. PMID 20354937
6. Hungness ES, Teitelbaum EN, Santos BF, et al. Comparison of perioperative outcomes between peroral esophageal myotomy (POEM) and laparoscopic Heller myotomy. *J Gastrointest Surg*. Feb 2013; 17(2): 228-35. PMID 23054897
7. Reddivari AKR, Mehta P. Gastroparesis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Updated February 28, 2024. <https://www.ncbi.nlm.nih.gov/books/NBK551528/>. Accessed September 23, 2025.
8. Dilmaghani S, Zheng T, Camilleri M. Epidemiology and Healthcare Utilization in Patients With Gastroparesis: A Systematic Review. *Clin Gastroenterol Hepatol*. Aug 2023; 21(9): 2239-2251.e2. PMID 35870768
9. Eckardt AJ, Eckardt VF. Treatment and surveillance strategies in achalasia: an update. *Nat Rev Gastroenterol Hepatol*. Jun 2011; 8(6): 311-9. PMID 21522116

10. Li H, Peng W, Huang S, et al. The 2 years' long-term efficacy and safety of peroral endoscopic myotomy for the treatment of achalasia: a systematic review. *J Cardiothorac Surg*. Jan 03 2019; 14(1): 1. PMID 30606216
11. Crespin OM, Liu LWC, Parmar A, et al. Safety and efficacy of POEM for treatment of achalasia: a systematic review of the literature. *Surg Endosc*. May 2017; 31(5): 2187-2201. PMID 27633440
12. Akintoye E, Kumar N, Obaitan I, et al. Peroral endoscopic myotomy: a meta-analysis. *Endoscopy*. Dec 2016; 48(12): 1059-1068. PMID 27617421
13. Patel K, Abbassi-Ghadi N, Markar S, et al. Peroral endoscopic myotomy for the treatment of esophageal achalasia: systematic review and pooled analysis. *Dis Esophagus*. Oct 2016; 29(7): 807-819. PMID 26175119
14. Andolfi C, Fisichella PM. Meta-analysis of clinical outcome after treatment for achalasia based on manometric subtypes. *Br J Surg*. Mar 2019; 106(4): 332-341. PMID 30690706
15. Dirks RC, Kohn GP, Slater B, et al. Is peroral endoscopic myotomy (POEM) more effective than pneumatic dilation and Heller myotomy? A systematic review and meta-analysis. *Surg Endosc*. May 2021; 35(5): 1949-1962. PMID 33655443
16. Facciorusso A, Singh S, Abbas Fehmi SM, et al. Comparative efficacy of first-line therapeutic interventions for achalasia: a systematic review and network meta-analysis. *Surg Endosc*. Aug 2021; 35(8): 4305-4314. PMID 32856150
17. Martins RK, Ribeiro IB, DE Moura DTH, et al. PERORAL (POEM) OR SURGICAL MYOTOMY FOR THE TREATMENT OF ACHALASIA: A SYSTEMATIC REVIEW AND META-ANALYSIS. *Arq Gastroenterol*. 2020; 57(1): 79-86. PMID 32294740
18. Aiolfi A, Bona D, Riva CG, et al. Systematic Review and Bayesian Network Meta-Analysis Comparing Laparoscopic Heller Myotomy, Pneumatic Dilatation, and Peroral Endoscopic Myotomy for Esophageal Achalasia. *J Laparoendosc Adv Surg Tech A*. Feb 2020; 30(2): 147-155. PMID 31364910
19. Ma O, Brar K, McCluskey S, et al. Long-term outcomes after per-oral endoscopic myotomy versus laparoscopic Heller myotomy in the treatment of achalasia: a systematic review and meta-analysis. *Surg Endosc*. Sep 2025; 39(9): 5985-5994. PMID 40624423
20. Teitelbaum EN, Soper NJ, Santos BF, et al. Symptomatic and physiologic outcomes one year after peroral esophageal myotomy (POEM) for treatment of achalasia. *Surg Endosc*. Dec 2014; 28(12): 3359-65. PMID 24939164
21. Ujiki MB, Yetasook AK, Zapf M, et al. Peroral endoscopic myotomy: A short-term comparison with the standard laparoscopic approach. *Surgery*. Oct 2013; 154(4): 893-7; discussion 897-900. PMID 24074429
22. Bhayani NH, Kurian AA, Dunst CM, et al. A comparative study on comprehensive, objective outcomes of laparoscopic Heller myotomy with per-oral endoscopic myotomy (POEM) for achalasia. *Ann Surg*. Jun 2014; 259(6): 1098-103. PMID 24169175
23. Kumagai K, Tsai JA, Thorell A, et al. Per-oral endoscopic myotomy for achalasia. Are results comparable to laparoscopic Heller myotomy?. *Scand J Gastroenterol*. May 2015; 50(5): 505-12. PMID 25712228
24. Kumbhari V, Tieu AH, Onimaru M, et al. Peroral endoscopic myotomy (POEM) vs laparoscopic Heller myotomy (LHM) for the treatment of Type III achalasia in 75 patients: a multicenter comparative study. *Endosc Int Open*. Jun 2015; 3(3): E195-201. PMID 26171430
25. Chan SM, Wu JC, Teoh AY, et al. Comparison of early outcomes and quality of life after laparoscopic Heller's cardiomyotomy to peroral endoscopic myotomy for treatment of achalasia. *Dig Endosc*. Jan 2016; 28(1): 27-32. PMID 26108140

26. Sanaka MR, Hayat U, Thota PN, et al. Efficacy of peroral endoscopic myotomy vs other achalasia treatments in improving esophageal function. *World J Gastroenterol*. May 28 2016; 22(20): 4918-25. PMID 27239118
27. Schneider AM, Louie BE, Warren HF, et al. A Matched Comparison of Per Oral Endoscopic Myotomy to Laparoscopic Heller Myotomy in the Treatment of Achalasia. *J Gastrointest Surg*. Nov 2016; 20(11): 1789-1796. PMID 27514392
28. Khashab MA, Kumbhari V, Tieu AH, et al. Peroral endoscopic myotomy achieves similar clinical response but incurs lesser charges compared to robotic heller myotomy. *Saudi J Gastroenterol*. 2017; 23(2): 91-96. PMID 28361839
29. Leeds SG, Burdick JS, Ogola GO, et al. Comparison of outcomes of laparoscopic Heller myotomy versus per-oral endoscopic myotomy for management of achalasia. *Proc (Bayl Univ Med Cent)*. Oct 2017; 30(4): 419-423. PMID 28966450
30. de Pascale S, Repici A, Puccetti F, et al. Peroral endoscopic myotomy versus surgical myotomy for primary achalasia: single-center, retrospective analysis of 74 patients. *Dis Esophagus*. Aug 01 2017; 30(8): 1-7. PMID 28575245
31. Peng L, Tian S, Du C, et al. Outcome of Peroral Endoscopic Myotomy (POEM) for Treating Achalasia Compared With Laparoscopic Heller Myotomy (LHM). *Surg Laparosc Endosc Percutan Tech*. Feb 2017; 27(1): 60-64. PMID 28145968
32. Ward MA, Gitelis M, Patel L, et al. Outcomes in patients with over 1-year follow-up after peroral endoscopic myotomy (POEM). *Surg Endosc*. Apr 2017; 31(4): 1550-1557. PMID 27858209
33. Hanna AN, Datta J, Ginzberg S, et al. Laparoscopic Heller Myotomy vs Per Oral Endoscopic Myotomy: Patient-Reported Outcomes at a Single Institution. *J Am Coll Surg*. Apr 2018; 226(4): 465-472.e1. PMID 29410262
34. Ramirez M, Zubieta C, Ciotola F, et al. Per oral endoscopic myotomy vs. laparoscopic Heller myotomy, does gastric extension length matter?. *Surg Endosc*. Jan 2018; 32(1): 282-288. PMID 28660419
35. Caldaro T, Familiari P, Romeo EF, et al. Treatment of esophageal achalasia in children: Today and tomorrow. *J Pediatr Surg*. May 2015; 50(5): 726-30. PMID 25783358
36. Fumagalli U, Rosati R, De Pascale S, et al. Repeated Surgical or Endoscopic Myotomy for Recurrent Dysphagia in Patients After Previous Myotomy for Achalasia. *J Gastrointest Surg*. Mar 2016; 20(3): 494-9. PMID 26589525
37. Greenleaf EK, Winder JS, Hollenbeak CS, et al. Cost-effectiveness of per oral endoscopic myotomy relative to laparoscopic Heller myotomy for the treatment of achalasia. *Surg Endosc*. Jan 2018; 32(1): 39-45. PMID 29218664
38. Kim GH, Jung KW, Jung HY, et al. Superior clinical outcomes of peroral endoscopic myotomy compared with balloon dilation in all achalasia subtypes. *J Gastroenterol Hepatol*. Apr 2019; 34(4): 659-665. PMID 30695124
39. Meng F, Li P, Wang Y, et al. Peroral endoscopic myotomy compared with pneumatic dilation for newly diagnosed achalasia. *Surg Endosc*. Nov 2017; 31(11): 4665-4672. PMID 28411346
40. Miller HJ, Neupane R, Fayezizadeh M, et al. POEM is a cost-effective procedure: cost-utility analysis of endoscopic and surgical treatment options in the management of achalasia. *Surg Endosc*. Apr 2017; 31(4): 1636-1642. PMID 27534662
41. Ponds FA, Fockens P, Lei A, et al. Effect of Peroral Endoscopic Myotomy vs Pneumatic Dilation on Symptom Severity and Treatment Outcomes Among Treatment-Naive Patients With Achalasia: A Randomized Clinical Trial. *JAMA*. Jul 09 2019; 322(2): 134-144. PMID 31287522

42. Sanaka MR, Thota PN, Parikh MP, et al. Peroral endoscopic myotomy leads to higher rates of abnormal esophageal acid exposure than laparoscopic Heller myotomy in achalasia. *Surg Endosc*. Jul 2019; 33(7): 2284-2292. PMID 30341655
43. Wang X, Tan Y, Lv L, et al. Peroral endoscopic myotomy versus pneumatic dilation for achalasia in patients aged \geq 65 years. *Rev Esp Enferm Dig*. Oct 2016; 108(10): 637-641. PMID 27649684
44. Werner YB, Hakanson B, Martinek J, et al. Endoscopic or Surgical Myotomy in Patients with Idiopathic Achalasia. *N Engl J Med*. Dec 05 2019; 381(23): 2219-2229. PMID 31800987
45. Wirsching A, Boshier PR, Klevebro F, et al. Comparison of costs and short-term clinical outcomes of per-oral endoscopic myotomy and laparoscopic Heller myotomy. *Am J Surg*. Oct 2019; 218(4): 706-711. PMID 31353034
46. Zheng Z, Zhao C, Su S, et al. Peroral endoscopic myotomy versus pneumatic dilation - result from a retrospective study with 1-year follow-up. *Z Gastroenterol*. Mar 2019; 57(3): 304-311. PMID 30861554
47. Podboy AJ, Hwang JH, Rivas H, et al. Long-term outcomes of per-oral endoscopic myotomy compared to laparoscopic Heller myotomy for achalasia: a single-center experience. *Surg Endosc*. Feb 2021; 35(2): 792-801. PMID 32157405
48. Tan Y, Zhu H, Li C, et al. Comparison of peroral endoscopic myotomy and endoscopic balloon dilation for primary treatment of pediatric achalasia. *J Pediatr Surg*. Oct 2016; 51(10): 1613-8. PMID 27339081
49. Boeckxstaens GE, Annese V, des Varannes SB, et al. Pneumatic dilation versus laparoscopic Heller's myotomy for idiopathic achalasia. *N Engl J Med*. May 12 2011; 364(19): 1807-16. PMID 21561346
50. Borges AA, Lemme EM, Abrahao LJ, et al. Pneumatic dilation versus laparoscopic Heller myotomy for the treatment of achalasia: variables related to a good response. *Dis Esophagus*. Jan 2014; 27(1): 18-23. PMID 23551592
51. Kostic S, Kjellin A, Ruth M, et al. Pneumatic dilatation or laparoscopic cardiomyotomy in the management of newly diagnosed idiopathic achalasia. Results of a randomized controlled trial. *World J Surg*. Mar 2007; 31(3): 470-8. PMID 17308851
52. Hamdy E, El Nakeeb A, El Hanfy E, et al. Comparative Study Between Laparoscopic Heller Myotomy Versus Pneumatic Dilatation for Treatment of Early Achalasia: A Prospective Randomized Study. *J Laparoendosc Adv Surg Tech A*. Jun 2015; 25(6): 460-4. PMID 25951417
53. Shally L, Saeed K, Berglund D, et al. Clinical and financial outcomes of per-oral endoscopic myotomy compared to laparoscopic heller myotomy for treatment of achalasia. *Surg Endosc*. Jul 2023; 37(7): 5526-5537. PMID 36220985
54. Costantini A, Familiari P, Costantini M, et al. Poem Versus Laparoscopic Heller Myotomy in the Treatment of Esophageal Achalasia: A Case-Control Study from Two High Volume Centers Using the Propensity Score. *J Gastrointest Surg*. Mar 2020; 24(3): 505-515. PMID 31848870
55. Shea GE, Johnson MK, Venkatesh M, et al. Long-term dysphagia resolution following POEM versus Heller myotomy for achalasia patients. *Surg Endosc*. Apr 2020; 34(4): 1704-1711. PMID 31292743
56. Attaar M, Su B, Wong HJ, et al. Comparing cost and outcomes between peroral endoscopic myotomy and laparoscopic heller myotomy. *Am J Surg*. Jul 2021; 222(1): 208-213. PMID 33162014

57. Zhong C, Tan S, Huang S, et al. Peroral endoscopic myotomy versus pneumatic dilation for achalasia: a systematic review and meta-analysis. *Eur J Gastroenterol Hepatol*. Nov 2020; 32(11): 1413-1421. PMID 32516175
58. de Moura ETH, Jukemura J, Ribeiro IB, et al. Peroral endoscopic myotomy vs laparoscopic myotomy and partial fundoplication for esophageal achalasia: A single-center randomized controlled trial. *World J Gastroenterol*. Sep 07 2022; 28(33): 4875-4889. PMID 36156932
59. Saleh CMG, Familiari P, Bastiaansen BAJ, et al. The Efficacy of Peroral Endoscopic Myotomy vs Pneumatic Dilation as Treatment for Patients With Achalasia Suffering From Persistent or Recurrent Symptoms After Laparoscopic Heller Myotomy: A Randomized Clinical Trial. *Gastroenterology*. Jun 2023; 164(7): 1108-1118.e3. PMID 36907524
60. Kuipers T, Ponds FA, Fockens P, et al. Peroral endoscopic myotomy versus pneumatic dilation in treatment-naive patients with achalasia: 5-year follow-up of a randomised controlled trial. *Lancet Gastroenterol Hepatol*. Dec 2022; 7(12): 1103-1111. PMID 36206786
61. Hugova K, Mares J, Hakanson B, et al. Per-oral endoscopic myotomy versus laparoscopic Heller's myotomy plus Dor fundoplication in patients with idiopathic achalasia: 5-year follow-up of a multicentre, randomised, open-label, non-inferiority trial. *Lancet Gastroenterol Hepatol*. May 2025; 10(5): 431-441. PMID 40112837
62. Docimo S, Mathew A, Shope AJ, et al. Reduced postoperative pain scores and narcotic use favor per-oral endoscopic myotomy over laparoscopic Heller myotomy. *Surg Endosc*. Feb 2017; 31(2): 795-800. PMID 27338580
63. Haseeb M, Khan Z, Kamal MU, et al. Short-term outcomes after peroral endoscopic myotomy, Heller myotomy, and pneumatic dilation in patients with achalasia: a nationwide analysis. *Gastrointest Endosc*. May 2023; 97(5): 871-879.e2. PMID 36639060
64. Dimopoulou A, Dimopoulou D, Analitis A, et al. Laparoscopic Heller myotomy versus peroral endoscopic myotomy in children with esophageal achalasia: a systematic review and meta-analysis. *Ann Gastroenterol*. 2024; 37(6): 655-664. PMID 39568706
65. Nabi Z, Talukdar R, Chavan R, et al. Outcomes of Per-Oral Endoscopic Myotomy in Children: A Systematic Review and Meta-analysis. *Dysphagia*. Dec 2022; 37(6): 1468-1481. PMID 35092485
66. Zhong C, Tan S, Huang S, et al. Clinical outcomes of peroral endoscopic myotomy for achalasia in children: a systematic review and meta-analysis. *Dis Esophagus*. Apr 07 2021; 34(4). PMID 33316041
67. Lee Y, Brar K, Doumouras AG, et al. Peroral endoscopic myotomy (POEM) for the treatment of pediatric achalasia: a systematic review and meta-analysis. *Surg Endosc*. Jun 2019; 33(6): 1710-1720. PMID 30767141
68. Bi YW, Lei X, Ru N, et al. Per-oral endoscopic myotomy is safe and effective for pediatric patients with achalasia: A long-term follow-up study. *World J Gastroenterol*. Jun 14 2023; 29(22): 3497-3507. PMID 37389239
69. Petrosyan M, Mostammand S, Shah AA, et al. Per Oral Endoscopic Myotomy (POEM) for pediatric achalasia: Institutional experience and outcomes. *J Pediatr Surg*. Nov 2022; 57(11): 728-735. PMID 35361482
70. Nabi Z, Ramchandani M, Chavan R, et al. Outcome of peroral endoscopic myotomy in children with achalasia. *Surg Endosc*. Nov 2019; 33(11): 3656-3664. PMID 30671667
71. Miao S, Wu J, Lu J, et al. Peroral Endoscopic Myotomy in Children With Achalasia: A Relatively Long-term Single-center Study. *J Pediatr Gastroenterol Nutr*. Feb 2018; 66(2): 257-262. PMID 28691974

72. Revicki DA, Rentz AM, Dubois D, et al. *Gastroparesis Cardinal Symptom Index (GCSI): development and validation of a patient reported assessment of severity of gastroparesis symptoms*. *Qual Life Res*. May 2004; 13(4): 833-44. PMID 15129893
73. Kamal F, Khan MA, Lee-Smith W, et al. *Systematic review with meta-analysis: one-year outcomes of gastric peroral endoscopic myotomy for refractory gastroparesis*. *Aliment Pharmacol Ther*. Jan 2022; 55(2): 168-177. PMID 34854102
74. Canakis, A., et al., *Long-term outcomes (3 years) after gastric peroral endoscopic myotomy for refractory gastroparesis: a systematic review and meta-analysis*. *iGIE*, 2023. 2(3): p. 344-349.e3.
75. Labonde A, Lades G, Debourdeau A, et al. *Gastric peroral endoscopic myotomy in refractory gastroparesis: long-term outcomes and predictive score to improve patient selection*. *Gastrointest Endosc*. Sep 2022; 96(3): 500-508.e2. PMID 35413333
76. Hernández Mondragón OV, Contreras LFG, Velasco GB, et al. *Gastric peroral endoscopic myotomy outcomes after 4 years of follow-up in a large cohort of patients with refractory gastroparesis (with video)*. *Gastrointest Endosc*. Sep 2022; 96(3): 487-499. PMID 35378136
77. Vosoughi K, Ichkhanian Y, Benias P, et al. *Gastric per-oral endoscopic myotomy (G-POEM) for refractory gastroparesis: results from an international prospective trial*. *Gut*. Jan 2022; 71(1): 25-33. PMID 33741641
78. Gregor L, Wo J, DeWitt J, et al. *Gastric peroral endoscopic myotomy for the treatment of refractory gastroparesis: a prospective single-center experience with mid-term follow-up (with video)*. *Gastrointest Endosc*. Jul 2021; 94(1): 35-44. PMID 33373646
79. Conchillo JM, Straathof JWA, Mujagic Z, et al. *Gastric peroral endoscopic pyloromyotomy for decompensated gastroparesis: comprehensive motility analysis in relation to treatment outcomes*. *Endosc Int Open*. Feb 2021; 9(2): E137-E144. PMID 33532550
80. Abdelfatah MM, Noll A, Kapil N, et al. *Long-term Outcome of Gastric Per-Oral Endoscopic Pyloromyotomy in Treatment of Gastroparesis*. *Clin Gastroenterol Hepatol*. Apr 2021; 19(4): 816-824. PMID 32450364
81. Hust'ak R, Vacková Z, Krajciová J, et al. *Per-oral endoscopic pyloromyotomy (g-poem) for the treatment of gastroparesis - a pilot single-centre study with mid-term follow-up*. *Rozhl Chir*. 2020; 99(3): 116-123. PMID 32349495
82. Tan J, Shrestha SM, Wei M, et al. *Feasibility, safety, and long-term efficacy of gastric peroral endoscopic myotomy (G-POEM) for postsurgical gastroparesis: a single-center and retrospective study of a prospective database*. *Surg Endosc*. Jul 2021; 35(7): 3459-3470. PMID 32880749
83. Ragi O, Jacques J, Branche J, et al. *One-year results of gastric peroral endoscopic myotomy for refractory gastroparesis: a French multicenter study*. *Endoscopy*. May 2021; 53(5): 480-490. PMID 32575130
84. Shen S, Luo H, Vachaparambil C, et al. *Gastric peroral endoscopic pyloromyotomy versus gastric electrical stimulation in the treatment of refractory gastroparesis: a propensity score-matched analysis of long term outcomes*. *Endoscopy*. May 2020; 52(5): 349-358. PMID 32084672
85. Vosoughi K, Ichkhanian Y, Jacques J, et al. *Role of endoscopic functional luminal imaging probe in predicting the outcome of gastric peroral endoscopic pyloromyotomy (with video)*. *Gastrointest Endosc*. Jun 2020; 91(6): 1289-1299. PMID 32035074
86. Xu J, Chen T, Elkholy S, et al. *Gastric Peroral Endoscopic Myotomy (G-POEM) as a Treatment for Refractory Gastroparesis: Long-Term Outcomes*. *Can J Gastroenterol Hepatol*. 2018; 2018: 6409698. PMID 30425974

87. Davis BR, Sarosiek I, Bashashati M, et al. The Long-Term Efficacy and Safety of Pyloroplasty Combined with Gastric Electrical Stimulation Therapy in Gastroparesis. *J Gastrointest Surg.* Feb 2017; 21(2): 222-227. PMID 27896652
88. Kahrilas PJ, Katzka D, Richter JE. Clinical Practice Update: The Use of Per-Oral Endoscopic Myotomy in Achalasia: Expert Review and Best Practice Advice From the AGA Institute. *Gastroenterology.* Nov 2017; 153(5): 1205-1211. PMID 28989059
89. Gonzalez JM, Mion F, Pioche M, et al. Gastric peroral endoscopic myotomy versus botulinum toxin injection for the treatment of refractory gastroparesis: results of a double-blind randomized controlled study. *Endoscopy.* May 2024; 56(5): 345-352. PMID 38141620
90. Martinek J, Hustak R, Mares J, et al. Endoscopic pyloromyotomy for the treatment of severe and refractory gastroparesis: a pilot, randomised, sham-controlled trial. *Gut.* Nov 2022; 71(11): 2170-2178. PMID 35470243
91. Vaezi MF, Pandolfino JE, Yadlapati RH, et al. ACG Clinical Guidelines: Diagnosis and Management of Achalasia. *Am J Gastroenterol.* Sep 2020; 115(9): 1393-1411. PMID 32773454
92. Camilleri M, Kuo B, Nguyen L, et al. ACG Clinical Guideline: Gastroparesis. *Am J Gastroenterol.* Aug 01 2022; 117(8): 1197-1220. PMID 35926490
93. Yang D, Bechara R, Dunst CM, et al. AGA Clinical Practice Update on Advances in Per-Oral Endoscopic Myotomy (POEM) and Remaining Questions-What We Have Learned in the Past Decade: Expert Review. *Gastroenterology.* Dec 2024; 167(7): 1483-1490. PMID 39425737
94. Khashab MA, Wang AY, Cai Q. AGA Clinical Practice Update on Gastric Peroral Endoscopic Myotomy for Gastroparesis: Commentary. *Gastroenterology.* Jun 2023; 164(7): 1329-1335.e1. PMID 37086247
95. Staller K, Parkman HP, Greer KB, et al. AGA Clinical Practice Guideline on Management of Gastroparesis. *Gastroenterology.* Oct 2025; 169(5): 828-861. PMID 40976635
96. Khashab MA, Vela MF, Thosani N, et al. ASGE guideline on the management of achalasia. *Gastrointest Endosc.* Feb 2020; 91(2): 213-227.e6. PMID 31839408
97. Zaninotto G, Bennett C, Boeckxstaens G, et al. The 2018 ISDE achalasia guidelines. *Dis Esophagus.* Sep 01 2018; 31(9). PMID 30169645
98. Kohn GP, Dirks RC, Ansari MT, et al. SAGES guidelines for the use of peroral endoscopic myotomy (POEM) for the treatment of achalasia. *Surg Endosc.* May 2021; 35(5): 1931-1948. PMID 33564964
99. Calabrese EC, Kindel T, Slater BJ, et al. 2024 Update to SAGES guidelines for the use of peroral endoscopic myotomy (POEM) in the treatment of achalasia. *Surg Endosc.* Jul 2025; 39(7): 4027-4037. PMID 40399617