

Medical Policy

Title: **Positron Emission Tomography (PET) Scanning: In Oncology to Detect Early Response During Treatment**

Related Policies:

- *PET Scanning- Oncologic Applications (Bone and Sarcoma)*
- *PET Scanning- Oncologic Applications (Brain, Melanoma, Unknown Primary)*
- *PET Scanning- Oncologic Applications (Breast and Gynecologic)*
- *PET Scanning- Oncologic Applications (Gastrointestinal and Pancreatic)*
- *PET Scanning- Oncologic Applications (Hematologic)*
- *PET Scanning- Oncologic Applications (Lung)*
- *PET Scanning: Miscellaneous (Non-cardiac, Non-oncologic) Applications of Fluorine 18 Fluorodeoxyglucose*
- *PET Scanning- Oncologic (Thyroid, Neuroendocrine, Head and Neck)*

Professional / Institutional

Original Effective Date: October 1, 1997

Latest Review Date:: January 5, 2026

Current Effective Date: January 5, 2026

State and Federal mandates and health plan member contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. To verify a member's benefits, contact [Blue Cross and Blue Shield of Kansas Customer Service](#).

The BCBSKS Medical Policies contained herein are for informational purposes and apply only to members who have health insurance through BCBSKS or who are covered by a self-insured group plan administered by BCBSKS. Medical Policy for FEP members is subject to FEP medical policy which may differ from BCBSKS Medical Policy.

The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents of Blue Cross and Blue Shield of Kansas and are solely responsible for diagnosis, treatment and medical advice.

If your patient is covered under a different Blue Cross and Blue Shield plan, please refer to the Medical Policies of that plan.

Populations	Interventions	Comparators	Outcomes
Individuals: • With breast cancer	Interventions of interest are: • Interim positron emission tomography as an adjunct to interim computed tomography	Comparators of interest are: • Interim computed tomography	Relevant outcomes include: • Overall survival • Disease-specific survival • Change in disease status • Quality of life • Morbid events • Treatment-related morbidity
Individuals: • With esophageal cancer	Interventions of interest are: • Interim positron emission tomography as an adjunct to interim computed tomography	Comparators of interest are: • Interim computed tomography	Relevant outcomes include: • Overall survival • Disease-specific survival • Change in disease status • Quality of life • Morbid events • Treatment-related morbidity
Individuals: • With gastrointestinal stromal tumors receiving palliative or adjuvant therapy	Interventions of interest are: • Interim positron emission tomography as an adjunct to interim computed tomography	Comparators of interest are: • Interim computed tomography	Relevant outcomes include: • Overall survival • Disease-specific survival • Change in disease status • Quality of life • Morbid events • Treatment-related morbidity
Individuals: • With gastrointestinal stromal tumors treated with tyrosine kinase inhibitors for <6 months	Interventions of interest are: • Interim positron emission tomography as an adjunct to interim computed tomography	Comparators of interest are: • Interim computed tomography	Relevant outcomes include: • Overall survival • Disease-specific survival • Change in disease status • Quality of life • Morbid events • Treatment-related morbidity
Individuals: • With head and neck cancer	Interventions of interest are: • Interim positron emission tomography as an adjunct to interim computed tomography	Comparators of interest are: • Interim computed tomography	Relevant outcomes include: • Overall survival • Disease-specific survival • Change in disease status • Quality of life • Morbid events • Treatment-related morbidity
Individuals: • With Hodgkin lymphoma	Interventions of interest are: • Interim positron emission tomography as	Comparators of interest are: • Interim computed tomography	Relevant outcomes include: • Overall survival • Disease-specific survival • Change in disease status

Populations	Interventions	Comparators	Outcomes
	an adjunct to interim computed tomography		<ul style="list-style-type: none"> • Quality of life • Morbid events • Treatment-related morbidity
Individuals: <ul style="list-style-type: none"> • With non-Hodgkin lymphoma 	Interventions of interest: <ul style="list-style-type: none"> • Interim positron emission tomography as an adjunct to interim computed tomography 	Comparators of interest are: <ul style="list-style-type: none"> • Interim computed tomography 	Relevant outcomes include: <ul style="list-style-type: none"> • Overall survival • Disease-specific survival • Change in disease status • Quality of life • Morbid events • Treatment-related morbidity
Individuals: <ul style="list-style-type: none"> • With non-small-cell lung cancer 	Interventions of interest are: <ul style="list-style-type: none"> • Interim positron emission tomography as an adjunct to interim computed tomography 	Comparators of interest are: <ul style="list-style-type: none"> • Interim computed tomography 	Relevant outcomes include: <ul style="list-style-type: none"> • Overall survival • Disease-specific survival • Change in disease status • Quality of life • Morbid events • Treatment-related morbidity
Individuals: <ul style="list-style-type: none"> • With ovarian cancer 	Interventions of interest are: <ul style="list-style-type: none"> • Interim positron emission tomography as an adjunct to interim computed tomography 	Comparators of interest are: <ul style="list-style-type: none"> • Interim computed tomography 	Relevant outcomes include: <ul style="list-style-type: none"> • Overall survival • Disease-specific survival • Change in disease status • Quality of life • Morbid events • Treatment-related morbidity
Individuals: <ul style="list-style-type: none"> • With other malignant solid tumors (e.g., bladder, colorectal, prostate, thyroid) during treatment 	Interventions of interest are: <ul style="list-style-type: none"> • Interim positron emission tomography as an adjunct to interim computed tomography 	Comparators of interest are: <ul style="list-style-type: none"> • Interim computed tomography 	Relevant outcomes include: <ul style="list-style-type: none"> • Overall survival • Disease-specific survival • Change in disease status • Quality of life • Morbid events • Treatment-related morbidity

DESCRIPTION

Positron emission tomography (PET) scanning has many established roles in oncology. One potential use of PET scanning is to assess treatment response early in the course of therapy, with the intent of potentially altering the regimen based on PET scan results. While several types of PET scanning are used for interim detection of cancer, this review refers to fluorine 18 fluorodeoxyglucose positron emission tomography (FDG-PET) unless otherwise noted.

OBJECTIVE

The objective of this evidence review is to evaluate the clinical validity and clinical utility of interim positron emission tomography in assessing early response to treatment in individuals with various types of cancer.

BACKGROUND

Positron Emission Tomography

Positron emission tomography (PET) scans are based on the use of positron-emitting radionuclide tracers coupled to other molecules, such as glucose, ammonia, or water. The radionuclide tracers simultaneously emit 2 high-energy photons in opposite directions that can be simultaneously detected (referred to as *coincidence detection*) by a PET scanner, which comprises multiple stationary detectors that encircle the region of interest. A variety of tracers are used for PET scanning, including oxygen 15, nitrogen 13, carbon 11, and fluorine 18. The radiotracer most commonly used in oncology imaging has been fluorine 18, coupled with deoxyglucose to form fluorodeoxyglucose, which has a metabolism related to glucose metabolism. Fluorodeoxyglucose has been considered potentially useful in cancer imaging because tumor cells show increased metabolism of glucose.

This evidence review focuses on the use of PET to determine early treatment response for cancer, ie, assessment of therapy response during cancer treatment. The purpose of the PET scan at this particular interval is to determine whether the treatment should be maintained or changed. Such a treatment strategy has been called "risk-adapted" or "response-adapted" treatment. This evidence review addresses detecting early response during short-term therapy (eg, during cycle[s] of chemotherapeutic agents and/or a course of radiotherapy) and not responding during the use of long-term agents (eg, tamoxifen).

The technique of using PET for early treatment response assessment involves comparing PET images before treatment and at some interval after the initial course of treatment. Many intervals have been used in various studies, and there appears to be no standard interval. Comparison of the pre- and mid-treatment PET images can either be performed qualitatively or quantitatively. If a quantitative technique is used, the most common quantity measure is the standardized uptake value, calculated for a specific region of the image. Various methods are used to compare standardized uptake values between 2 images, and a specific cutoff value is selected to determine whether the patient is responding to therapy. A change in standardized uptake value between 40% and 60% often has been used in studies of early treatment response. Other metabolic parameters measured are total lesion glycolysis and metabolic tumor volume.

Hillner et al (2009) published results of a survey of physicians who had registered patients in the National Oncologic PET Registry, assessing the impact of PET on clinical management decisions for their patients with cancer.¹ PET scans were most frequently ordered for patients with ovarian cancer (14%), followed by pancreatic cancer (8%), non-small-cell lung cancer (7%), and small-cell lung cancer (7%). Physicians considered the patients' prognoses as better (42%), unchanged (31%), or worse (26%) compared with the prognosis assessment before receiving information from PET. Physicians reported changing the management plan (switching therapy, adjusting the dose or duration of therapy, or switching to observation or supportive care) in 41% of their

patients whose prognosis assessment was better based on PET results, in 35% of patients whose prognosis did not change based on PET results, and in 79% of patients whose prognosis was worse based on PET results.

Use of interim PET to guide therapy decisions is to be distinguished from uses of PET in the initial diagnosis and staging of cancer and other uses after treatment, such as routine surveillance, detection of progression, or recurrence. The use of PET for diagnosis, staging, and surveillance in patients with cancer is addressed in a number of evidence reviews:

Interim PET use also differs from what has been called "response assessment" or "treatment response" in some reports, which refers to imaging done after completion of therapy for prognosis and future treatment planning.

Some differentiate between PET during and after treatment by referring to PET during cancer treatment as "interim treatment response" or "interim staging" or even "interim restaging", and PET at the conclusion of treatment as "restaging."

Interim FDG-PET to assess response during treatment for advanced (stages IIB to 4) Hodgkin lymphoma is typically done after 2-4 cycles of treatment.

REGULATORY STATUS

A number of PET scan platforms have been cleared by the U.S. Food and Drug Administration (FDA) through the 510(k) process since the Penn-PET scanner was approved in 1989. These systems are intended to aid in detecting, localizing, diagnosing, staging, and restaging of lesions, tumors, disease, and organ function for the evaluation of diseases and disorders such as, but not limited to, cardiovascular disease, neurologic disorders, and cancer. The images produced by the system can aid in radiotherapy treatment planning and interventional radiology procedures.

PET radiopharmaceuticals have been evaluated and approved as drugs by the FDA for use as diagnostic imaging agents. These radiopharmaceuticals are approved for specific conditions. In December 2009, the FDA issued guidance for Current Good Manufacturing Practice for PET drug manufacturers², and, in August 2011, issued similar Current Good Manufacturing Practice Guidance for small businesses compounding radiopharmaceuticals.³ An additional final guidance document issued in December 2012 required all PET drug manufacturers and compounders to operate under an approved new drug application, abbreviated new drug application, or investigational new drug application, by December 12, 2015.⁴

Table 1 lists some of the radiopharmaceuticals granted FDA approval for use with PET for oncologic-related indications.

Table 1. Radiopharmaceuticals Approved for Use With PET for Carcinoma-Related Indications

Agent	Brand Name	Manufacturer	Date Approved	NDA No.	Carcinoma-Related Indication With PET
Carbon 11 choline	NA	Various	2012	203155	Suspected prostate cancer recurrence based on elevated blood PSA after therapy and noninformative bone scintigraphy, CT, or MRI
Copper 64 dotate	Detectnet™	Curium	2020	213227	Localization of somatostatin receptor-positive NETs in adult patients
Fluorine 18 fluorodeoxyglucose	NA	Various	2000	20306	Suspected or existing diagnosis of cancer, all types
Fluorine 18 fluciclovine	Axumin™	Blue Earth Diagnostics	2016	208054	Suspected prostate cancer recurrence based on elevated blood PSA levels after treatment
Fluorine 18 fluoroestradiol	CERIANNA™	Zionexa	2020	212155	Detection of ER-positive lesions as an adjunct to biopsy in patients with recurrent or metastatic breast cancer
Gallium 68 dotate	NETSPOT™	Advanced Accelerator Applications	2016	208547	Localization of somatostatin receptor-positive NETs in adult and pediatric patients
Gallium 68 dotatoc	NA	University of Iowa	2019	210828	Localization of somatostatin receptor-positive

Agent	Brand Name	Manufacturer	Date Approved	NDA No.	Carcinoma-Related Indication With PET
					NETs in adult and pediatric patients
Gallium 68 PSMA-11	NA	University of California, Los Angeles and the University of California, San Francisco	2020	212642	PSMA positive lesions in men with prostate cancer with suspected metastasis who are candidates for initial definitive therapy or with suspected recurrence based on elevated serum PSA level
Piflufolastat fluorine-18	Pylarify®	Progenics Pharmaceuticals, Inc	2021	214793	PSMA positive lesions in men with prostate cancer with suspected metastasis who are candidates for initial definitive therapy or with suspected recurrence based on elevated serum PSA level

CT: computed tomography; ER: estrogen receptor; MRI: magnetic resonance imaging; NA: not applicable; NDA: new drug application; NETs: neuroendocrine tumors; PET: positron emission tomography; PSA: prostate-specific antigen; PSMA: prostate-specific membrane antigen.

POLICY

- A. The use of interim fluorine 18 fluorodeoxyglucose positron emission tomography scans to determine response to tyrosine kinase inhibitor treatment in individuals with gastrointestinal stromal tumors is considered **medically necessary**.
- B. The use of interim fluorine 18 fluorodeoxyglucose positron emission tomography scans to assess response during treatment for advanced (stages IIB to 4) Hodgkin lymphoma is considered **medically necessary** (see Policy Guidelines).
- C. The use of positron emission tomography scans to determine early response to treatment (positron emission tomography scans done during a planned course of chemotherapy and/or radiotherapy) in individuals with gastrointestinal stromal tumors on palliative or adjuvant therapy, as well as all other cancers, is considered **experimental / investigational**.

Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

RATIONALE

This evidence review was created using searches of the PubMed database. The most recent literature update was performed through September 17, 2025.

Evidence reviews assess the clinical evidence to determine whether the use of technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life (QOL), and ability to function including benefits and harms. Every clinical condition has specific outcomes that are important to patients and managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of technology, 2 domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent 1 or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. Randomized controlled trials are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

This evidence review discusses only studies that explicitly stated positron emission tomography (PET) was used to guide therapeutic decisions in cancer patients. Most studies that evaluate PET during treatment have analyzed the association between PET findings and various intermediate

endpoints, such as pathologic or clinical response at the end of treatment, PET findings at the end of treatment, or long-term results. Although associations between PET and all these endpoints have consistently been found for a number of cancers, whether such associations lead directly to improved patient outcomes depends on the specific context of the treatment decisions being made in response to PET findings and available alternatives.

INTERIM POSITRON EMISSION TOMOGRAPHY SCANNING FOR BREAST CANCER

Clinical Context and Test Purpose

The purpose of interim PET as an adjunct to interim computed tomography (CT) in individuals with breast cancer is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The population of interest is individuals with breast cancer.

Interventions

The intervention of interest is interim PET scanning, performed to guide therapy.

Comparators

The following test is currently being used to make decisions about managing patients with breast cancer who have initiated treatment in order to determine therapeutic response and guide decision making: interim CT.

Outcomes

The general outcomes of interest are QOL, overall survival (OS), and progression-free survival (PFS).

Both false-positive and false-negative results can lead to incorrect treatment recommendations, such as continuing treatment that is ineffective, stopping treatment that is effective, and/or delaying initiation of more appropriate therapy.

The timing is during cycles of chemotherapeutic agents and/or a course of radiotherapy (RT).

Table 2. Outcomes of Interest

Outcomes	Details
Change in disease status	Outcomes of interest include patient response and disease progression [Timing: ≥ 1 month]
Morbid events	Outcomes of interest include adverse events such as neutropenia and febrile neutropenia [Timing: ≥ 1 month]

Study Selection Criteria

For the evaluation of clinical validity of interim PET scanning, studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores);
- Included a suitable reference standard;
- Patient/sample clinical characteristics were described;
- Patient/sample selection criteria were described.

Clinically Valid

A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

REVIEW OF EVIDENCE

Systematic Reviews

The purpose of the systematic review and meta-analysis by Li et al (2018) relates to the current lack of consensus on the best tool to evaluate pathologic response to neoadjuvant chemotherapy in breast cancer patients.⁵ Selection criteria included patients who had undergone both magnetic resonance imaging (MRI) and PET/CT after preoperative neoadjuvant chemotherapy. The postoperative pathologic result (pathologic complete response [pCR] vs. non-pCR) served as the criterion standard for inclusion, and each study required a minimum of 10 patients and associated raw data. The evaluation parameter for MRI was tumor size or maximum diameter, while the parameter for PET/CT was the maximum standardized uptake value (SUVmax) or peak SUV served. The literature search included the Cochrane, PubMed, EMBASE, Web of Science, and Chinese Biomedicine Literature databases from inception to February 2017. Thirteen studies involving 575 patients who underwent MRI and 618 who underwent PET/CT were analyzed. The pooled sensitivity and specificity of MRI were 88% (95% confidence interval [CI], 78% to 94%) and 69% (95% CI, 51% to 83%) and the corresponding PET/CT values were 77% (95% CI, 78% to 94%) and 69% (95% CI, 63% to 88%), respectively. The area under the summary receiver operating characteristic curve for MRI and PET/CT were 0.88 and 0.84, respectively. Reviewers concluded that MRI had a higher sensitivity and PET/CT had a higher specificity, but based on the area under the summary receiver operating characteristic curve and anatomic discriminative resolution, MRI was deemed more suitable for predicting breast cancer pathologic response after neoadjuvant chemotherapy. Subgroup analysis to address the different definitions of pCR and histology subtypes and various receptor statuses was not conducted due to the limited number of patients, possibly suggesting heterogeneity. Other limitations included inconsistencies in definitions and criteria and exclusion of non-English studies.

Lindenberg et al (2017) published a systematic review on the use of imaging (fluorine 18 fluorodeoxyglucose PET [FDG-PET] and dynamic contrast-enhanced MRI) to monitor response to neoadjuvant therapy in patients with breast cancer.⁶ The literature search, conducted through March 2015, identified 15 observational studies for inclusion. Studies were assessed for quality using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool, and all included studies had scores of 8 or higher. Reviewers provided descriptions of the imaging methods (type of imaging, monitoring interval) and results (sensitivity, specificity, negative [NPV] and positive predictive values [PPV]) by breast cancer subtype: estrogen receptor (ER)-positive and human

epidermal growth factor receptor 2 (*HER2*)-negative, triple-negative, *HER2*-positive, ER-positive and *HER2*-positive, and ER-negative and *HER2*-positive. Sensitivity estimates ranged from 18% to 89%, specificity estimates ranged from 52% to 100%, PPV estimates ranged from 0% to 100%, and NPV ranged from 10% to 84%. Meta-analyses were not performed due to heterogeneity across studies. Studies differed by neoadjuvant chemotherapy regimen and definition of pCR. While reviewers intended to determine the best performing imaging technique by breast cancer subtype, selected articles showed that there is a lack of evidence with adequate statistical power to draw conclusions by each subtype.

To compare the utility of PET/CT with MRI of the breast in the assessment of pCR to neoadjuvant chemotherapy, Chen et al (2017) conducted meta-analysis using head-to-head comparative studies.⁷ Analysis of 11 studies with a total of 527 patients calculated a pooled sensitivity of 87% (95% CI, 71% to 95%) and a specificity of 85% (95% CI, 70% to 93%) for PET/CT. The pooled sensitivity was 79% (95% CI, 68% to 87%) and the specificity was 82% (95% CI, 72% to 89%) for MRI. Reviewers concluded that diagnostic performance of MRI was similar to that for PET/CT when assessing breast cancer response to neoadjuvant chemotherapy, however, investigators found PET/CT to be more sensitive than conventional contrast-enhanced MRI (88% [95% CI, 71% to 95%] vs. 74% [95% CI, 60% to 85%]; $p=.018$) and more specific when scanned within 3 cycles of neoadjuvant chemotherapy (94% [95% CI, 78% to 98%] vs. 83% [95% CI, 81% to 87%]; $p=.015$). Limitations of the studies assessed included small sample sizes, potential publication bias, and the decision to exclude factors such as the definition of pCR and breast cancer phenotypes, which are known to affect estimate accuracy.

Nonrandomized Studies

Several clinical studies of breast cancer in the neoadjuvant setting have demonstrated associations between early or interim PET and recurrence, response, or survival outcomes.^{8,9,10,11,12,13,14,15,16,17,18}

Kitajima et al (2018) compared the response classifications, Positron Emission Tomography Response Criteria in Solid Tumors (PERCIST), version 1.0, with Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, to evaluate the pathologic therapeutic response to neoadjuvant chemotherapy in 32 breast cancer patients who underwent both MRI and FDG-PET.¹⁹ Based on RECIST 1.1 using MRI measurements, treatment efficacy was graded as a complete response in 5 (15.6%) patients, partial response in 25 (78.1%), stable disease in 2 (6.3%), and progressive disease in 0. Based on PERCIST 1.0 with FDG-PET/CT findings, treatment efficacy was graded as a complete metabolic response in 28 (87.5%) patients, partial metabolic response in 2 (6.3%), stable metabolic disease in 1 (3.1%), and progressive metabolic disease in 1 (3.1%). Concordance between RECIST 1.1 and PERCIST 1.0 classifications was found in 7 (21.9%) cases, while discordance was found in 25 (78.1%)($k=0.103$, $p<.001$). This study found the 2 classifications to be complementary in predicting pathologic response to neoadjuvant chemotherapy. Study limitations include the retrospective design, small sample size collected at a single-center, and inability to analyze OS due to a small number of deaths in the cohort ($n=3$).

In a multicenter study of 59 breast cancer patients, Kitajima et al (2018) found that, based on PERCIST response, FDG-PET/CT underestimated the residual tumor volume following neoadjuvant chemotherapy and had both a relatively low specificity for pCR and PPV, and that a combination of other imaging modalities would still be needed to predict pCR of primary

tumors.²⁰ Other limitations included a retrospective design, small sample size, heterogeneous chemotherapy regimen across centers, and an inability to assess OS.

Retrospectively, Yoon et al (2018) investigated the prognostic value of tumor heterogeneity using an analysis of texture parameters with FDG-PET and diffusion-weighted imaging in 83 patients who had locally advanced breast cancer and had completed neoadjuvant chemotherapy. Among the 83 patients, 46 were pathologic responders and 37 were nonresponders.²¹ The authors concluded the results suggested that texture-based analysis of tumor heterogeneity on FDG-PET/CT and diffusion-weighted imaging could be used to predict neoadjuvant chemotherapy response and disease recurrence in this population, and in particular, higher metabolic heterogeneity on PET was a significant predictor of unfavorable response to chemotherapy and worse disease prognosis ($p=.009$).

Quantitative indices of PET findings used to identify a response versus nonresponse on PET or PET plus CT may depend on the type of chemotherapy and tumor phenotype.^{22,23} For example, van Ramshorst et al (2017) found that for patients with triple-negative tumors ($n=45$) receiving neoadjuvant systemic therapy, FDG-PET/CT of the breast can predict pCR, while patients with *HER2*-positive tumors ($n=60$) may need both FDG-PET/CT of the breast and axilla for a more accurate pCR.²⁴

In a larger study, Schmitz et al (2017) assessed 188 women with stages II or III breast cancer who underwent MRI and FDG-PET/CT before and after neoadjuvant chemotherapy.²⁵ Analyses were stratified by tumor type: *HER2*-positive, ER-positive and *HER2*-negative, and triple-negative. The primary outcome was pCR defined as no or only small numbers of scattered invasive tumor cells. Results showed that for *HER2*-positive tumors, MRI was a significantly better predictor of pCR than FDG-PET/CT. For ER-positive and *HER2*-negative tumors, combining MRI and FDG-PET/CT might provide the best monitoring of treatment, though results were not statistically significant. For triple-negative tumors, the 2 imaging techniques performed equally in predicting pCR.

Riedl et al (2017) compared the efficacy of FDG-PET/CT with contrast-enhanced CT for the primary outcomes of PFS and disease-free survival in 65 patients undergoing systemic therapy for stage IV breast cancer.²⁶ Treatment response was evaluated using RECIST for contrast-enhanced CT and using PERCIST for PET. Results suggested that PET/CT was superior to contrast-enhanced CT in predicting PFS and disease-free survival. For example, responses using RECIST and PERCIST both correlated with PFS, but PERCIST showed significantly higher predictive accuracy (concordance index for PFS: 0.70 vs. 0.60), and at 1 year, responders versus nonresponder rates using RECIST were 59% versus 27%, compared with 63% versus 0% using PERCIST, respectively. At 4 years, disease-free survival for responders and nonresponder rates using RECIST were 50% and 38%, respectively ($p=.2$, concordance index: 0.55) compared with 58% and 18% using PERCIST ($p<.001$, concordance index: 0.65). Use of multiple therapy protocols, the inclusion of various breast cancer subtypes, small sample size, and a retrospective design limit conclusions drawn from this study.

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, more effective therapy, or avoid unnecessary therapy or testing.

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs.

Randomized Controlled Trials

Early results of the Addition of bevacizumab to neoadjuvant trastuzumab and doceTAXel in FDG PET-predicted non-responders (AVATAHER) trial were reported by Coudert et al (2014).²⁷ This randomized, open-label, multicenter phase 2 trial enrolled women (≥18 years) with early-stage *HER2*-positive breast cancer from 26 oncology centers in France. A total of 142 patients were enrolled between 2010 and 2012. Patients initially received 2 cycles of neoadjuvant chemotherapy (standard regimen). Before the first and second cycles, FDG-PET was performed and the change in SUV was used to predict pCR in each patient. Patients who were predicted to be responders on PET continued to receive standard therapy. FDG-PET nonresponders were randomized (2:1) to 4 cycles of 1 chemotherapy regimen plus bevacizumab (Group A) or to continue on the standard regimen without bevacizumab (Group B). Investigators and patients were unblinded but the pathologist in charge of central surgical sample and lymph node reviews was blinded. The primary endpoint was centrally assessed pCR according to the Chevallier classification.

Of the 142 patients, 69 were PET responders after 2 cycles and 73 were nonresponders. Pathologic complete responses were noted in 37 (54%) of the FDG-PET responders. In the randomized participants (PET nonresponders), 27 (37%) of 73 achieved pCR, as did 21 (43.8%; 95% CI, 29.5% to 58.8%) of those in the PET-directed therapy group, and 6 (24.0%; 95% CI, 9.4% to 45.1%) of those in standard therapy group. Incidences of grade 3 or 4 adverse events were similar in both groups, with the most common grade 3 to 4 adverse events being neutropenia and febrile neutropenia. Fifteen serious adverse events were reported in 11 (15%) of 73 patients. No deaths occurred during the trial. The OS or PFS results were not available at reporting. Reported long-term follow-up results from the AVATAHER trial showed 5-year disease-free survival rates of 90.5% (95% CI, 80.0% to 95.6%) in PET responders, 90.2% (95% CI, 75.9% to 96.2%) in Group A, and 76.0% (95% CI, 54.2% to 88.4%) in Group B.²⁸ However, a post-hoc sensitivity analysis, which considered patients who discontinued treatment early as treatment failures, found no difference in disease-free survival among PET responders (82.4%), Group A nonresponders (74.8%), and Group B nonresponders (76%). Other outcomes, including OS, were scarce and not commonly reached in all trial arms at 5 years. The authors concluded that the initial improvements seen in pCR based on early PET assessment and intervention did not translate into long-term improvements in disease-free survival.

Another similar randomized, open-label phase 2 trial, the Chemotherapy de-escalation using an FDG-PET-based pathological response-adapted strategy in patients with *HER2*-positive early breast cancer (PHERGain) trial, enrolled women 18 years and older with *HER2*-positive early breast cancer to assess response to neoadjuvant trastuzumab plus pertuzumab using FDG-

PET.²⁹ The study, which was conducted at 45 hospitals in Europe, randomized patients (stratified by hormone receptor status) to receive docetaxel, carboplatin, trastuzumab, plus pertuzumab (group A; n=71), or trastuzumab and pertuzumab (group B; n=285). Hormone receptor-positive patients in group B were also given letrozole or tamoxifen based on menopausal status. FDG-PET scans were completed prior to randomization and repeated after 2 treatment cycles for comparison. Patients in Group A completed 6 cycles of treatment regardless of FDG-PET results; patients in Group B who were considered responders based on FDG-PET results after 2 cycles continued the same treatment for 6 additional cycles and nonresponders were switched to the same treatment as Group A. Surgery was completed at least 2 weeks after the last treatment was administered. The co-primary endpoints assessed were the proportion of FDG-PET responders in group B with a pCR in the breast and axilla after 8 cycles of treatment and disease-free survival of patients in group B at 3 years.

Of 356 patients randomized, 288 were PET responders (227 in Group B and 61 in Group A) after 2 cycles and 68 (58 in Group B and 10 in Group A) were nonresponders. Pathologic complete responses were reported in 37.9% of responders (95% CI, 31.6% to 44.5%; p<.0001) and in 25.9% (95% CI, 15.3% to 39.0%; p=.068) of nonresponders, both from Group B. Grade 3 to 4 hematologic adverse events generally occurred less frequently in Group B compared to Group A: anemia, 1% versus 9%, respectively; neutropenia, 4% versus 24%, respectively; and febrile neutropenia, 4% versus 21%, respectively. Serious adverse events were reported in 5% of patients in group B compared to 29% of patients in Group A. The authors concluded that FDG-PET successfully identified patients with *HER2*-positive early-stage breast cancer who were likely to benefit from dual *HER2* blockage without chemotherapy. The 3-year results were published by Pérez-García et al (2024).³⁰ In Group B, the 3-year invasive disease-free survival rate was 94.8% (95% CI, 91.4% to 97.1%; p=.001), meeting the primary endpoint. Treatment-related adverse events (grade ≥ 3 , 62% vs. 33%) and serious adverse events (28% vs. 14%) were numerically higher in patients in Group A compared to Group B. Group B PET-responders with pCR had the lowest incidence of treatment-related grade 3 or higher adverse events (1%) without any serious adverse events. The authors concluded that a PET-based, pCR-adapted strategy identified about a third of patients with *HER2*-positive early breast cancer who could safely omit chemotherapy and was associated with an excellent 3-year disease free survival. Further clinical investigation is warranted to determine the appropriateness of interim FDG-PET in dictating treatment.

Section Summary: Breast Cancer

Evidence for the clinical validity of interim FDG-PET for monitoring disease in patients with breast cancer includes several systematic reviews, numerous observational studies, and RCTs. Results from the systematic reviews showed wide ranges in sensitivities, specificities, PPV, and NPV. The wide ranges may be due to small sample sizes, use of different definitions of the primary outcome (pCR), and differences in breast cancer subtypes in the sample populations. Data from observational studies have suggested a need for considering breast cancer subtype and the type of treatment in creating criteria for assessing early prediction of response with PET. Evidence for the clinical utility of interim FDG-PET or PET/CT to evaluate early response in breast cancer is limited and consists of results of two phase 2 RCTs of patients with early-stage *HER2*-positive breast cancer, and a long-term follow-up report from 1 of the 2 RCTs. The first RCT randomized patients identified as nonresponders by interim PET to more intensive chemotherapy or standard care. Although the results showed initially higher response rates in the more intensive treatment group, this did not translate to long-term improvements in disease-free survival. The second RCT randomized patients to 1 of 2 treatment groups: a more intensive treatment group containing 2

chemotherapeutic agents and 2 *HER2*-blocking therapies, and a second treatment group administered only the 2 *HER2*-blocking agents. After 2 treatment cycles, patients in the less-intensive treatment group who were found to be nonresponders by PET scanning were switched to the more intensive regimen. This RCT found that among patients who received dual *HER2* blockade without chemotherapy (compared to those who received this treatment in addition to chemotherapy), PET-responders had significantly higher response rates to treatment. By year 3, 94.8% of those PET-responders treated with less-intensive treatment had experienced disease-free survival, without any serious adverse events. This PET-based, pCR-adapted strategy identified about a third of patients in the clinical trial with *HER2*-positive early breast cancer who could safely omit chemotherapy and was associated with an excellent 3-year disease free survival. However, further clinical investigation is warranted to determine the appropriateness of interim FDG-PET in dictating treatment.

INTERIM POSITRON EMISSION TOMOGRAPHY SCANNING FOR ESOPHAGEAL CANCER

Clinical Context and Test Purpose

The purpose of interim PET as an adjunct to interim CT in individuals with esophageal cancer is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The population of interest is individuals with esophageal cancer.

Interventions

The intervention of interest is interim PET scanning, performed to guide therapy.

Comparators

The following test is currently being used to make decisions about managing patients with esophageal cancer who have initiated treatment in order to determine therapeutic response and guide decision making: interim CT.

Outcomes

The general outcomes of interest are QOL, OS, and PFS.

Both false-positive and false-negative results can lead to incorrect treatment recommendations, such as continuing treatment that is ineffective, stopping treatment that is effective, and/or delaying initiation of more appropriate therapy.

The timing is during cycles of chemotherapeutic agents and/or a course of RT.

Table 3. Outcomes of Interest

Outcomes	Details
Change in disease status	Outcomes of interest include patient response and disease progression [Timing: ≥ 1 month]
Morbid events	Outcomes of interest include adverse events such as neutropenia and febrile neutropenia [Timing: ≥ 1 month]

Study Selection Criteria

For the evaluation of clinical validity of interim PET scanning, studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores);
- Included a suitable reference standard;
- Patient/sample clinical characteristics were described;
- Patient/sample selection criteria were described.

The current treatment strategy for individuals with esophageal cancer depends on the cancer stage. Individuals who do not have lymph node involvement and have no evidence of metastases usually undergo surgery alone. Individuals with locally advanced disease are often offered neoadjuvant treatment (chemotherapy and/or chemoradiotherapy) followed by esophagectomy.

Clinically Valid

A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

REVIEW OF EVIDENCE

Systematic Reviews

Han et al (2021) reported the results of a meta-analysis of 11 studies (mainly prospective in nature) evaluating the pathologic and prognostic value of FDG-PET in patients with esophageal cancer undergoing neoadjuvant chemoradiotherapy (N=695).³¹ The literature search was conducted through September 2020; PET scanning occurred either during (n=1 study) or after (n=10 studies) induction chemotherapy or concurrent chemoradiotherapy. The QUADAS-2 and QUIPS scores were used to assess methodological quality of the studies. Although overall the quality of included studies was considered to be "good" (all studies satisfied at least 4 of the 7 QUADAS domains), both scores identified various methodological flaws that increased the risk for bias in the studies due to factors such as a retrospective design, use of data-dependent cutoff values, or unclear methods. Pooled values for sensitivity and specificity of interim PET to predict a pathologic response were 80% (95% CI, 61% to 91%; I^2 , 70.28%) and 54% (95% CI, 45% to 63%; I^2 , 58.36%), respectively. The authors noted significant heterogeneity in these results due to variation in the definition of a pathologic response and the timing of PET scanning within the individual trials.

Cong et al (2016) published a meta-analysis on the predictive value of FDG-PET for the pathologic response during and after neoadjuvant chemoradiotherapy in patients with esophageal cancer.³² The literature review, conducted through January 2016, identified 15

publications. Four studies (n=192 patients) conducted PET during neoadjuvant chemoradiotherapy, and 11 studies (n=490 patients) conducted PET after neoadjuvant chemoradiotherapy. Study quality was assessed using QUADAS scores, which ranged from 9 to 12 (total points, 14) in the included studies. Only 5 studies described blinding of the pathology reviewers to FDG-PET data and other test results. The pooled sensitivity, specificity, and diagnostic odds ratio for the studies conducting PET during neoadjuvant chemoradiotherapy were: 85% (95% CI, 76% to 91%), 59% (95% CI, 48% to 69%), and 6.8 (95% CI, 2.3 to 20.7), respectively. The pooled sensitivity, specificity, and diagnostic odds ratio for the studies conducting PET after neoadjuvant chemoradiotherapy were: 67% (95% CI, 60% to 73%), 69% (95% CI, 63% to 74%), and 6.3 (95% CI, 2.1 to 19.3), respectively. Subgroup analyses of studies that conducted PET after neoadjuvant chemoradiotherapy and included only patients with squamous cell carcinoma (4 studies, 129 patients), showed a higher pooled sensitivity, specificity, and diagnostic odds ratio: 90% (95% CI, 80% to 96%), 69% (95% CI, 56% to 80%), and 17.3 (95% CI, 3.1 to 95.4), respectively. Reviewers concluded that FDG-PET should not be used routinely to guide treatment strategies in patients with esophageal cancer based on the low pooled estimates; however, PET may be considered for the subset of patients with squamous cell carcinoma.

Nonrandomized Studies

Van Rossum et al (2017) published a study evaluating the use of FDG-PET before and after induction chemotherapy to predict response to subsequent chemoradiotherapy in patients with adenocarcinoma.³³ Patients who were to receive a 3-step treatment strategy of induction chemotherapy, followed by chemoradiotherapy and then surgery (n=70), underwent FDG-PET before and after the induction chemotherapy phase of the treatment. PET identified 27 patients with poor pathologic responses to the induction chemotherapy (defined as <26% reduction in total lesion glycolysis after chemotherapy). After a median follow-up of 48 months (range, 15 to 99 months), PFS was significantly lower among patients identified by PET as poor responders compared with patients identified by PET as good responders.

Hagen et al (2017) published a study evaluating the predictive value of FDG-PET before and 2 weeks after chemoradiotherapy in 106 patients with esophageal cancer who then underwent potentially curative surgery.³⁴ The outcome of metabolic response, stable disease, or progression was assessed using PERCIST. Patients were followed until disease recurrence or death. The minimum follow-up of surviving patients was 60 months. Five-year disease-free survival rates for patients determined by FDG-PET as having a metabolic response, stable disease, or progression were 66%, 53%, and 67%, respectively. These rates did not differ statistically. The authors concluded that FDG-PET should not be used as a prognostic tool for these patients.

Retrospective Studies

A retrospective study by Odawara et al (2018) compared classification using RECIST and PERCIST in the assessment of response to neoadjuvant chemotherapy for 62 patients who had esophageal cancer.³⁵ Patients underwent FDG-PET/CT, contrast-enhanced CT scanning, esophageal fibroscopy, endoscopic ultrasonography, or esophagography before and after neoadjuvant chemotherapy. Patients were divided into responders and nonresponders by pathologic response, and concordance between RECIST and PERCIST for response classification was seen in 28 (45.2%) patients. The authors concluded that PERCIST might be better suited to evaluate neoadjuvant therapeutic response to esophageal cancer. Study limitations included the

retrospective design, small sample size, and single-institution sample, as well as the lack of correlation between PERCIST criteria and prognosis.

Manoharan et al (2017) published a study evaluating the use of FDG-PET before and after neoadjuvant therapy in patients with resectable distal esophageal cancer (n=21) and gastric adenocarcinoma (n=14).³⁶ Maximum and percent change of both SUV and metabolic tumor volume (MTV) were measured and correlated with tumor regression and survival to assess predictive value. The best PET-based biomarker for predicting pathologic response and survival was the percent change in SUVmax. Patients with 70% or more change in SUVmax had lower risks of death and recurrence than patients with less than 70% SUVmax.

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, more effective therapy, or avoid unnecessary therapy or testing.

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs.

Systematic Reviews

In the meta-analysis by Han et al (2021) previously described, results from studies that estimated prognostic measures, including PFS and OS, were pooled.³¹ Individual studies utilized the percent change in SUV to classify patients as early metabolic responders and nonresponders. Pooled results from 4 studies that predicted PFS among early responders showed a hazard ratio (HR) of 0.44 (95% CI, 0.30 to 0.63; I^2 , 25%). Nine studies that predicted OS among early responders found a pooled HR of 0.42 (95% CI, 0.31 to 0.56; I^2 , 31%) associated with FDG-PET. The authors concluded that early-response assessment using FDG-PET can help to stratify risk and guide therapy in patients with esophageal cancer receiving neoadjuvant chemoradiotherapy. These results were limited by small sample sizes in the individual studies (n range: 27 to 111) and risk for bias within some of the studies as was described previously.

Randomized Controlled Trial

Results of the Cancer and Leukemia Group B (CALGB) 80803 trial (also called the ALLIANCE trial) were reported by Goodman et al (2021).³⁷ This randomized, open-label phase 2 trial was conducted at 69 outpatient cancer centers in the United States and designed to assess the effects of PET response-adapted therapy in 257 adult patients (≥ 18 years) with esophageal or esophagogastric junction cancers. Patients were randomly assigned to induction treatment with either oxaliplatin, leucovorin, and fluorouracil (FOLFOX), or carboplatin-paclitaxel (CP). PET scans were performed at baseline and after completion of induction chemotherapy (during days 36 to 42). Patients who were determined to be responders based on PET results continued on with the same chemotherapy regimen that they were initially assigned to; PET nonresponders crossed over to the alternative chemotherapeutic regimen. Patients also received RT on the first day of concurrent chemotherapy. The primary endpoint was the pCR rate of PET nonresponders within each of the induction treatment groups. Overall survival was reported as a secondary endpoint.

Of the 225 patients with interpretable PET scans after completion of induction chemotherapy, 136 were deemed to be responders (72, FOLFOX; 64, CP) and 89 were nonresponders (39, FOLFOX; 50, CP). The percentage of patients with pCR was similar among 39 PET nonresponders who crossed over from FOLFOX to CP (pCR, 18%; 95% CI, 7.5% to 33.5%) and in 50 PET nonresponders who crossed over from CP to FOLFOX (pCR, 20%; 95% CI, 10% to 33.7%; $p=1$ for comparison). After a median follow-up period of 5.17 years, the median OS was 41.2 months overall (95% CI, 30.9 to not estimable [NE]). When comparing PET responders to nonresponders, median OS was 48.8 months (95% CI, 33.2 to NE) and 27.4 months (95% CI 19.4 to NE), respectively. Two-year OS rates were 67.1% (95% CI, 59.6% to 75.6%) and 56.8% (95% CI, 47.4% to 68.2%) in the PET responders and nonresponders, respectively and 5-year OS rates were 48.7% (95% CI, 40.9% to 58.1%) and 39.1% (95% CI, 30.1% to 50.9%), respectively. Overall survival was not found to be significantly different between PET responders and nonresponders (HR, 1.34; 95% CI, 0.94 to 1.92).

Section Summary: Esophageal Cancer

Evidence for the clinical validity of FDG-PET as an adjunct to CT to determine early treatment response for patients with esophageal cancer consists of 2 meta-analyses, 2 nonrandomized studies, and 2 retrospective studies. Results were inconsistent across studies. Results from the meta-analysis showed low pooled sensitivities and specificities, indicating FDG-PET may be a poor guide to inform treatment strategies in patients with esophageal cancer. One of the nonrandomized trials published after the meta-analysis supported this conclusion. However, a subgroup analysis in the meta-analysis that included only studies of patients with squamous cell carcinoma, and 2 studies published after the meta-analysis, reported that FDG-PET could adequately predict responders to neoadjuvant therapy. Evidence for clinical utility of FDG-PET for patients with esophageal cancer consists of 1 meta-analysis and 1 RCT. The meta-analyses found that patients considered to be responders early in therapy based on FDG-PET assessment were found to have improvements in PFS and OS compared to nonresponders. A single RCT found that PET-guided therapy led to improvements in pCR, but not OS, in patients considered nonresponders to initial therapy.

INTERIM POSITRON EMISSION TOMOGRAPHY SCANNING FOR GASTROINTESTINAL STROMAL TUMORS TREATED WITH PALLIATIVE OR ADJUVANT THERAPY

Clinical Context and Test Purpose

The purpose of interim PET as an adjunct to interim CT in individuals with gastrointestinal stromal tumors treated with palliative or adjuvant therapy is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The population of interest is individuals with gastrointestinal stromal tumors treated with palliative or adjuvant therapy.

Interventions

The intervention of interest is interim PET scanning, performed to guide therapy.

Comparators

The following test is currently being used to make decisions about managing patients with gastrointestinal stromal tumors who have initiated treatment in order to determine therapeutic response and guide decision making: interim CT.

Outcomes

The general outcomes of interest are QOL, OS, and PFS.

Both false-positive and false-negative results can lead to incorrect treatment recommendations, such as continuing treatment that is ineffective, stopping treatment that is effective, and/or delaying initiation of more appropriate therapy.

The timing is during cycles of chemotherapeutic agents and/or a course of RT.

Table 4. Outcomes of Interest

Outcomes	Details
Change in disease status	Outcomes of interest include patient response and disease progression [Timing: ≥ 1 month]
Morbid events	Outcomes of interest include adverse events such as neutropenia and febrile neutropenia [Timing: ≥ 1 month]

Study Selection Criteria

For the evaluation of clinical validity of interim PET scanning, studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores);
- Included a suitable reference standard;
- Patient/sample clinical characteristics were described;
- Patient/sample selection criteria were described.

Clinically Valid

A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Review of Evidence

No studies were identified to provide support for long-term PET-guided palliative or adjuvant treatment of patients with gastrointestinal stromal tumors.

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, more effective therapy, or avoid unnecessary therapy or testing.

No studies were identified to provide support for long-term PET-guided palliative or adjuvant treatment of patients with gastrointestinal stromal tumors.

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs.

No RCTs were identified assessing PET-guided palliative or adjuvant treatment of patients with gastrointestinal stromal tumors.

Section Summary: Gastrointestinal Stromal Tumors Treated with Palliative or Adjuvant Therapy

There were no studies identified to provide support for long-term PET-guided palliative or adjuvant treatment of patients with gastrointestinal stromal tumors.

INTERIM POSITRON EMISSION TOMOGRAPHY SCANNING FOR GASTROINTESTINAL STROMAL TUMORS TREATED WITH TYROSINE KINASE INHIBITORS

Clinical Context and Test Purpose

The purpose of interim PET as an adjunct to interim CT in individuals with gastrointestinal stromal tumors treated with tyrosine kinase inhibitors (TKIs) is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The population of interest is individuals with gastrointestinal stromal tumors treated with TKIs.

Interventions

The intervention of interest is interim PET scanning, performed to guide therapy.

Comparators

The following test is currently being used to make decisions about managing patients with gastrointestinal stromal tumors who have initiated treatment in order to determine therapeutic response and guide decision making: interim CT.

Outcomes

The general outcomes of interest are QOL, OS, and PFS.

Both false-positive and false-negative results can lead to incorrect treatment recommendations, such as continuing treatment that is ineffective, stopping treatment that is effective, and/or delaying initiation of more appropriate therapy.

The timing is during cycles of chemotherapeutic agents and/or a course of RT.

Table 5. Outcomes of Interest

Outcomes	Details
Change in disease status	Outcomes of interest include patient response and disease progression [Timing: ≥ 1 month]
Morbid events	Outcomes of interest include adverse events such as neutropenia and febrile neutropenia [Timing: ≥ 1 month]

Study Selection Criteria

For the evaluation of clinical validity of interim PET scanning, studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores);
- Included a suitable reference standard;
- Patient/sample clinical characteristics were described;
- Patient/sample selection criteria were described.

Clinically Valid

A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

REVIEW OF EVIDENCE

Systematic Reviews

A systematic review by Treglia et al (2012) assessed studies of FDG-PET for evaluating treatment response to imatinib and other drugs in gastrointestinal stromal tumors.³⁸ Reviewers concluded that "FDG PET allows an early assessment of treatment response and is a strong predictor of clinical outcome." This conclusion was based on 19 studies (n=192 patients) that showed associations between PET as early as 1 week after initiation of TKI (imatinib, sunitinib, masitinib) therapy and survival outcomes. None of the reviewed studies assessed the impact of PET-directed treatment changes on net health outcome. A chain of evidence was identified; in patients with borderline resectable gastrointestinal stromal tumor involvement, rapid assessment of treatment response can guide clinical decision making regarding the surgical approach or addition of second-line treatment.³⁹

Retrospective Studies

A National Comprehensive Cancer Network (NCCN) task force report (included in the Treglia et al [2012] review) identified a small retrospective study of 20 patients with gastrointestinal stromal tumors who were treated with the TKI, imatinib, and underwent PET, CT, and PET/CT imaging.³⁹ PET/CT was more accurate than either PET or CT alone for detecting tumor response at 1, 3, and 6 months after initiation of imatinib. Based on this study, the task force recommended PET for response assessment to targeted gastrointestinal stromal tumor therapy.

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, more effective therapy, or avoid unnecessary therapy or testing.

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs. No RCTs were identified assessing the clinical utility of interim PET scanning for gastrointestinal stromal tumors treated with TKIs.

Section Summary: Gastrointestinal Stromal Tumors Treated With Tyrosine Kinase Inhibitors

Evidence for the clinical validity of the use of interim FDG-PET as an adjunct to CT to evaluate treatment response in patients with gastrointestinal stromal tumors treated with TKIs consists of a systematic review of 19 studies. Seventeen of the studies found that interim FDG-PET adequately measured tumor response to TKIs (imatinib, sunitinib, masitinib), and could be a strong predictor of clinical outcome as early as 1 month after initiating treatment. While CT detects anatomic changes in the tumor, FDG-PET detects changes in the metabolic activity of the tumor. Because metabolic changes precede anatomic changes by several weeks or even months, FDG-PET can detect treatment response earlier, compared with CT's size-based criteria. PET is therefore preferred if a rapid read-out of response to targeted therapy is needed to guide treatment decisions.

INTERIM POSITRON EMISSION TOMOGRAPHY SCANNING FOR HEAD AND NECK CANCER

Clinical Context and Test Purpose

The purpose of interim PET as an adjunct to interim CT in individuals with head and neck cancer is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The population of interest is individuals with head and neck cancer.

Interventions

The intervention of interest is interim PET scanning, performed to guide therapy.

Comparators

The following test is currently being used to make decisions about managing patients with head and neck cancer who have initiated treatment in order to determine therapeutic response and guide decision making: interim CT.

Outcomes

The general outcomes of interest are QOL, OS, and PFS.

Both false-positive and false-negative results can lead to incorrect treatment recommendations, such as continuing treatment that is ineffective, stopping treatment that is effective, and/or delaying initiation of more appropriate therapy.

The timing is during cycles of chemotherapeutic agents and/or a course of RT.

Table 6. Outcomes of Interest

Outcomes	Details
Change in disease status	Outcomes of interest include patient response and disease progression [Timing: ≥ 1 month]
Morbid events	Outcomes of interest include adverse events such as neutropenia and febrile neutropenia [Timing: ≥ 1 month]

Study Selection Criteria

For the evaluation of clinical validity of interim PET scanning, studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores);
- Included a suitable reference standard;
- Patient/sample clinical characteristics were described;
- Patient/sample selection criteria were described.

Clinically Valid

A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

REVIEW OF EVIDENCE

Systematic Reviews

The diagnostic value of FGD-PET/CT to evaluate treatment response in head and neck squamous cell carcinoma was analyzed in a systematic review and meta-analysis by Helsen et al (2018).⁴⁰ A search of the PubMed and Web of Knowledge databases identified 20 studies (N=1293). The pooled sensitivity, specificity, and diagnostic odds ratio were 85% (95% CI, 76% to 91%), 93% (95% CI, 89% to 96%), and 76 (95% CI, 35 to 165), respectively. PPV and NPV were 58% and 98% at a prevalence of 10%, and significant heterogeneity was shown between trials ($p < .001$). FDG-PET/CT within 6 months of chemoradiotherapy was a reliable detector of residual/recurrent nodal disease in head and neck squamous cell carcinoma patients. This analysis suggested that the timing of FDG-PET/CT after therapy completion is important particularly after 11 weeks.

Min et al (2017) published a systematic review of the predictive value of functional imaging (MRI, CT, PET) in patients with mucosal primary head and neck cancer treated with RT.⁴¹ The literature search, conducted through March 2015, identified 99 studies for inclusion, 7 of which used interim PET/CT and 9 which used different radiotracers with PET (fluorine 18 misonidazole, fluorine 18 thymidine, fluoroazomycin arabinoside, and methionine carbon 11). Study quality assessment was not mentioned in the review. Five of the 7 studies using PET/CT confirmed the predictive value of PET for disease-free survival and OS. The non-FDG-PET studies had small

sample sizes and inconsistent results. One study showed that fluorine 18 thymidine may have better predictive value than FDG.

Castelli et al (2016) published a systematic review of the predictive value of FDG-PET/CT for patients with head and neck cancer who were treated with chemoradiotherapy.⁴² The literature search, conducted through March 2016, identified 45 studies for inclusion. Most studies evaluated the predictive value of FDG-PET for diagnosing head and neck cancer. Seven of the studies (n=374 patients) investigated interim FDG-PET in patients receiving RT with or without chemotherapy. Five of the 7 studies overlapped with those identified in the Min et al (2017) review. Study quality assessment was not mentioned in the review. Six of the 7 studies reported a correlation between PET measurements (SUVmax, total lesion glycolysis, MTV) and clinical outcomes (disease-free survival, OS). The optimal time to perform FDG-PET during treatment is unclear, though most studies used PET after 3 weeks of treatment. Meta-analyses were not conducted.

Dos Anjos et al (2016) published a systematic review of the effectiveness of FDG-PET/CT for patients with head and neck squamous cell carcinoma receiving induction chemotherapy.⁴³ The literature search, conducted through May 2016, identified 7 articles for inclusion (N=207 patients). Based on an Agency for Healthcare Research and Quality checklist for assessing the quality of observational studies, the articles were considered to have a moderate risk of bias. Methodologic limitations included incomplete explanations of confounding variables and the absence of follow-up. Six of the 7 articles reported that FDG-PET/CT provided an adequate early response prediction of survival. Meta-analysis could not be conducted due to the heterogeneity in response criteria, SUVmax thresholds, and outcomes.

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, more effective therapy, or avoid unnecessary therapy or testing.

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs. No RCTs were identified assessing PET-guided treatment of patients with head and neck cancers.

Section Summary: Head and Neck Cancer

Evidence for the clinical validity of interim FDG-PET as an adjunct to CT in predicting disease-free survival and OS in patients with head and neck cancer consists of several systematic reviews. Most showed that FDG-PET used during RT, with or without chemotherapy, can adequately predict disease-free survival and OS. Meta-analyses could not be performed in any of the systematic reviews due to the heterogeneity in the methods used across the studies to determine response. Most studies used SUVmax, however, thresholds varied across the studies. No studies were identified that could provide evidence for the clinical utility of interim FDG-PET for patients with head and neck cancer.

INTERIM POSITRON EMISSION TOMOGRAPHY SCANNING FOR HODGKIN LYMPHOMA

Clinical Context and Test Purpose

The purpose of interim PET as an adjunct to interim CT in individuals with Hodgkin lymphoma (HL) is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The population of interest is individuals with HL.

Interventions

The intervention of interest is interim PET scanning, performed to guide therapy.

Comparators

The following test is currently being used to make decisions about managing patients with HL who have initiated treatment in order to determine therapeutic response and guide decision making: interim CT.

Outcomes

The general outcomes of interest are QOL, OS, and PFS.

Both false-positive and false-negative results can lead to incorrect treatment recommendations, such as continuing treatment that is ineffective, stopping treatment that is effective, and/or delaying initiation of more appropriate therapy.

The timing is during cycles of chemotherapeutic agents and/or a course of RT.

Table 7. Outcomes of Interest

Outcomes	Details
Change in disease status	Outcomes of interest include patient response and disease progression [Timing: \geq 1 month]
Morbid events	Outcomes of interest include adverse events such as neutropenia and febrile neutropenia [Timing: \geq 1 month]

Study Selection Criteria

For the evaluation of clinical validity of interim PET scanning, studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores);
- Included a suitable reference standard;
- Patient/sample clinical characteristics were described;
- Patient/sample selection criteria were described.

Clinically Valid

A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

REVIEW OF EVIDENCE

Systematic Reviews

Adams and Kwee (2016) published a systematic review and meta-analysis calculating false-positive rates of FDG-PET during and at the end of treatment, using biopsy as the reference standard in patients with lymphoma and FDG-avid lesions.⁴⁴ Overall methodologic study quality was moderate, as assessed by the QUADAS-2 tool. Table 8 summarizes the pooled false-positive rates. There were no studies for interim PET in HL.

Table 8. Pooled False-Positive Rates

Treatment	Condition	No. of Studies	False-Positive Rate, %	95% CI, %
Interim FDG-PET	Hodgkin lymphoma	0		
Interim FDG-PET	Non-Hodgkin lymphoma	4	83	72 to 90
End-of-treatment FDG-PET	Hodgkin lymphoma	3	23	5 to 65
End-of-treatment FDG-PET	Non-Hodgkin lymphoma	2	31	4 to 84

CI: confidence interval; FDG-PET: fluorine 18 fluorodeoxyglucose positron emission tomography.

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, more effective therapy, or avoid unnecessary therapy or testing.

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs.

RANDOMIZED CONTROLLED TRIALS

Systematic Reviews

A Cochrane systematic review by Sickinger et al (2015) evaluated interim FDG-PET-adapted therapy following first-line treatment in HL.⁴⁵ The search strategy included RCTs comparing PET-adapted to nonadapted therapy in patients with previously untreated HL of all stages and ages published in the Cochrane Central Register of Controlled Trials, PubMed, or presented at conference proceedings from 1990 to 2014. Reviewers found 2 publications and 1 abstract for a total of 3 eligible trials (N=1480).^{46,47,48} The quality of the evidence for the primary outcome of PFS was considered moderate. In all 3 trials, PET-adapted therapy included no RT after PET-negative results following initial chemotherapy. The pooled estimate of PFS was shorter in

participants with PET-adapted therapy (without RT) than in those receiving standard treatment with RT (HR, 2.38; 95% CI, 1.62 to 3.50; $p < .001$). The authors were unable to draw conclusions about OS due to the small number of deaths reported in the 3 trials. The studies included little to no data on response rates, treatment-related mortality, QOL, or short- and long-term adverse events. Kreuzberger et al (2025) updated the 2015 review and identified 10 studies.⁴⁹ The authors categorized the studies into early-, intermediate-, and advanced-stage HL. In early-stage HL, the effect of PET-based treatment adaptation for PET-negative scans was uncertain for outcomes of OS and PFS. In intermediate stage HL, the omission of radiotherapy based on PET was seen to have little effect on both OS or PFS. In advanced-stage HL, OS was improved, although not significantly (HR, 0.65; 95% CI, 0.40 to 1.07; moderate-certainty), PFS was not different (HR, 0.98; 95% CI, 0.78 to 1.25; moderate-certainty), and low-certainty evidence indicated treatment de-escalation may reduce treatment-related mortality (risk ratio [RR], 0.21; 95% CI, 0.06 to 0.73). The authors concluded that in advanced-stage HL, reducing chemotherapy upon negative interim-PET may increase overall survival.

In 2020, another Cochrane systematic review by Aldin et al assessed whether interim PET scan results can distinguish between those with a poor prognosis and those with a better prognosis, and thereby predict survival outcomes, in previously untreated adults with HL receiving first-line therapy.⁵⁰ The search strategy revealed a total of 23 studies with 7335 newly-diagnosed patients with HL. Participants in 16 studies underwent interim PET in combination with CT while PET only scans occurred in the remaining 7 studies. Results revealed moderate-certainty evidence that interim PET scan results predict OS, and very low-certainty evidence that interim PET scan results predict PFS in treated individuals with HL. The authors concluded that more studies are needed to test the adjusted prognostic ability of interim PET against established prognostic factors.

The goal of PET-directed therapy is to achieve similar efficacy concerning PFS while avoiding unnecessary exposure to radiation, which can have toxic side effects, including late secondary cancers^{51,52}, and cardiovascular disease,^{53,54} or to reduce the side effects of additional chemotherapy by decreasing the number of cycles or chemotherapeutic agents. A total of 10 RCTs have compared PET-directed therapy with standard therapy in patients with HL (all of which were included in the 2025 Cochrane review). Characteristics of the studies are summarized in Table 9 and briefly below. The trials either randomized patients at enrollment (AHL2011; H10; HD16; HD17) or after interim or end-of-treatment PET scan. Although most trials reported results for the PET-negative patients in each group, some trials reported the whole population or reported the positive and negative patients separately.

In a series of studies from the German Hodgkin Study Group (GHSG), patients with early-stage favorable (HD16), early-stage unfavorable (HD17), and advanced-stage (HD18) HL were enrolled. Fuchs et al (2019) published the results of HD16, a noninferiority trial in patients with early-stage favorable HL.⁵⁵ Patients were randomized to PET-guided therapy which omitted radiotherapy after negative PET following 2 chemotherapy cycles (PET2). A total of 1150 patients were included. In 2021, the PET-guided omission of radiotherapy in early-stage unfavorable HL (GHSG HD17) study was published.⁵⁶ This multicenter, phase 3, randomized, open-label trial included 1100 adult patients 18 to 60 years with early-stage HL with unfavorable characteristics and compared standard combined modality treatment (a 2 + 2 chemotherapy regimen followed by RT) to PET after 4 cycles (PET4)-guided treatment (2 + 2 chemotherapy followed by RT only in those with a positive PET4 scan). CT and PET4 scans occurred between day 29 and 35 of the fourth chemotherapy cycle. The trial evaluated the noninferiority of the PET-directed therapy

group for 5-year PFS with an 8% margin for the absolute difference. Borchmann et al (2017) published the HD18 study evaluating PET-guided treatment in patients with advanced-stage HL.⁵⁷ This open-label, randomized, phase 3 trial was conducted at 301 hospitals and private practices in Germany, Switzerland, Austria, the Netherlands, and the Czech Republic and included 2001 adult patients (18 to 60 years) with advanced-stage HL. After receiving 2 cycles of standard therapy, restaging was done with contrast-enhanced CT and PET scanning (PET2). Of 1964 patients who had PET2 scanning completed, 951 patients with a positive PET2 scan were randomized to receive 6 additional cycles standard therapy, or standard therapy plus rituximab; 1013 patients with a negative PET2 scan were randomly assigned to 6 additional cycles of standard therapy or 2 additional cycles of standard therapy (experimental treatment). Patients in any group with lesions of at least 2.5 cm in the largest diameter with residual FDG uptake after chemotherapy also received RT. The primary endpoint in the study was PFS. The trial was designed to assess the noninferiority of the experimental treatment (4 cycles of standard therapy) in the PET2 negative cohort compared to standard treatment, with a margin of 6% set for the absolute difference in the 5-year PFS estimates.

Gallamini et al (2020) reported the final analysis of the GITIL/Fondazione Italiana Linfomi HD0607 trial in patients with advanced HL.⁵⁸ Patients age 16 to 60 years with stage IIB to IV HL were enrolled and randomized to observation or radiotherapy after both a negative PET2 and a complete metabolic response at the end of chemotherapy (PET6). A total of 296 patients were included. The median age was about 31 years and there were more patients with stage IIB disease (nearly half) than stage III or IV. A Deauville score of 1, 2, or 3 was regarded as indicating negative PET findings, and a score of 4 or 5 as indicating positive PET findings.

Ricardi et al (2021) published the final results of the phase 3 Fondazione Italiana Linfomi HD0801 trial in patients with advanced-stage HL.⁵⁹ Patients age 18 to 70 years with stage IIB to IV HL were enrolled and randomized to observation or radiotherapy after both a negative PET2 and a complete metabolic response at the end of chemotherapy (PET6). A total of 116 patients were included. The median age was 31 years and the patients were evenly distributed among stage II (29%), III (35%), and IV (35%). Positive PET scans included those with Deauville scores of 4 or 5.

Casasnovas et al (2019) published the results of the randomized, noninferiority, phase 3 study AHL2011 in patients with advanced HL.⁶⁰ Patients were randomized to standard treatment or PET-driven treatment after 2 cycles of chemotherapy. A total of 823 patients age 23 to 41 years of age were included. The majority of patients had stage IV disease (60%), but patients with stage IIB (12%) and III (28%) were also enrolled. Positive PET scans included those with Deauville scores of 4 or 5.

The trial reported by Johnson et al (2016) randomized 937 newly diagnosed advanced classic HL patients (median age, 33 years; 55% men) who had a negative interim PET coupled with CT scan after an initial 2 cycles of standard chemotherapy to continued standard chemotherapy for 4 cycles or to a different combination of chemotherapy agents (PET-directed therapy).⁶¹ A Deauville score of 1, 2, or 3 was regarded as indicating negative PET findings, and a score of 4 or 5 as indicating positive PET findings. The trial evaluated the noninferiority of the chemotherapy regimen in the PET-directed therapy for 3-year PFS with a 5% point margin for the risk difference. A publication by Luminari et al (2024) reported on 7-year PFS.⁶²

The Randomised Phase III Trial to Determine the Role of FDG-PET Imaging in Clinical Stages IA/IIA Hodgkin's Disease (RAPID) study, reported by Radford et al (2015) recruited 602 patients (53.3% male; median age, 34 years) with newly diagnosed stage IA or stage IIA HL, of whom 571 patients received 3 cycles of chemotherapy and then PET scanning performed on full-ring PET or PET with CT cameras.⁴⁶ A Deauville score of 1 or 2 indicated negative findings and a score of 3, 4, or 5 indicated positive findings. A total of 420 patients with negative PET findings were randomized to involved-field RT (standard therapy) or no further treatment (PET-directed therapy). This trial assessed the noninferiority of no further treatment, designed to exclude a difference in the 3-year PFS rate of 7 or more percentage points from the assumed 95% PFS rate in the RT group.

Raemaekers et al (2014) published a preplanned interim futility analysis of the European Organization for Research and Treatment of Cancer/Lymphoma Study Association/Fondazione Italiana Linfomi (EORTC/LYSA/FIL) Intergroup H10 trial.⁴⁸ The trial randomized patients who had previously untreated stage I or II HL to PET-directed therapy or standard therapy. Standard therapy was chemotherapy plus 30-Gray radiation. PET images were scored according to the International Harmonization Project criteria, with a negative PET corresponding to scores 1 (no uptake) and 2 (uptake \leq mediastinum) on the 5-point Deauville scale. Patients in the PET-directed therapy arm who had a negative early PET scan (after 2 chemotherapy cycles) did not receive RT but received additional chemotherapy cycles. Patients with favorable or unfavorable prognostic factors were analyzed separately. The trial design was noninferiority, with margins for the HRs of 3.2 and 2.1 for favorable and unfavorable, respectively.

Picardi et al (2007) reported on a trial of PET-directed therapy versus standard therapy in 160 patients (median age, 31 years; 55% men) with newly diagnosed bulky HL of any stage.⁴⁷ PET scans were performed using a dedicated tomography scanner (Advanced NXi, General Electrics). Negative PET was defined as no evidence of uptake, and positive PET was defined as increased uptake in a focus within an abnormal area. Patients having negative PET scans following induction chemotherapy with 6 cycles of chemotherapy were randomized to observation (PET-directed therapy) or 32-Gray RT (standard therapy). The study was powered to detect a 10% risk difference in event-free survival (EFS), defined as relapse, secondary malignancies, or death from any cause; the specific hypothesis (superiority vs. noninferiority) was not reported.

Table 9. Summary of Key RCT Characteristics of PET-Guided Therapy in Hodgkin Lymphoma Patients

Study	Countries	Sites	Dates	Participants	Interventions	
Ricardi et al (2021) ⁵⁵ ; [Ricardi U, Levis M, Evangelista A, et al. Role of.... (21): 4504-4514. PMID 34597375]; HD0801; HD0801	Italy	50	2008-2013	Untreated stage IIB to IV HL who are PET2 and PET6 negative	RT: 49	Observation: 58
Borchmann et al (2021) ⁵⁶ ; GHSG HD17	Germany, Switzerland, Austria, the Netherlands	224	NR	Newly diagnosed, early-stage, unfavorable HL	Standard combined-modality treatment group: 548	PET4-guided treatment group: 552
Gallamini et al (2020) ⁵⁸ ; HD0607	Italy, Israel	26	2008-2014	Untreated stage IIB to IV HL who are PET2 and PET6 negative	RT: 148	Observation: 148
Fuchs et al (2019) ⁵⁵ ; GHSG HD16	Germany, Switzerland, Austria, and the Netherlands	250	2009-2015	Newly diagnosed, early-stage, favorable HL	Standard combined-modality treatment group: 573	PET2-guided treatment group: 566
Borchmann et al (2017) ⁵⁷ ; HD18	Germany, Switzerland, Austria, the Netherlands, and the Czech Republic	301	NR	Newly diagnosed, advanced-stage HL	PET2-assigned to standard therapy: 508	PET2-assigned to experimental treatment: 505
Casasnovas et al (2019) ⁶⁰ ; AHL2011	Belgium and France	90	2011-2014	Untreated stage IIB to IV HL	Standard combined-modality treatment group: 413	PET2-guided treatment group: 410
Johnson et al (2016); ⁶¹ Luminari et al (2024) ⁶² ; RATHL	5 European countries plus Australia, New Zealand	138	2008-2012	Untreated stage IIA (with adverse features) or IIB to IV HL	465 assigned to AVD	470 assigned to ABVD
Radford et al (2015) ⁴⁶ ; RAPID	United Kingdom	94	2003-2010	Untreated stage IA/IIA HL	211 no further therapy	209 radiotherapy
Raemaekers et al (2014) ⁴⁸ ; EORTC/LYSA/FIL H10	8 European countries	158	2006-2011	Untreated stage I/II HL	Experimental • 221 favorable prognoses ^a • 347 unfavorable prognoses ^a	Standard • 223 favorable prognoses ^a • 346 unfavorable prognoses ^a
Picardi et al (2007) ⁴⁷	NR	NR	2000-2006	Untreated bulky HL	Radiotherapy: 80	Observation: 80

ABVD: doxorubicin, bleomycin, vinblastine, dacarbazine; AVD: doxorubicin, vinblastine, dacarbazine; ESR: erythrocyte sedimentation rate; HL: Hodgkin lymphoma; NR: not reported; PET: positron emission tomography; PET2/4: PET after 2 or 4 cycles ; RCT: randomized controlled trial.

^a Favorable prognosis: age <50 y with ≤3 involved nodal areas, absence of mediastinal bulk (mediastinum-to-thorax ratio <0.35), and ESR <50 mm without B symptoms or ESR <30 mm with B symptoms; Unfavorable prognosis: age ≥50 y, >4 involved nodal areas, presence of mediastinal bulk (mediastinum-to-thorax ratio ≥0.35), or ESR ≥50 mm without B symptoms or ESR ≥30 mm with B symptoms.

The results of these RCTs for PET-directed therapy in HL patients are summarized in Table 10 and below.

In the HD16 trial (Fuchs et al 2019), the median follow-up was 45 months.⁵⁵ Five-year PFS among 628 PET2-negative patients was greater in patients who had combined chemotherapy and radiotherapy compared with those who had radiotherapy omitted with a PET2-negative scan (HR, 1.78; 95% CI, 1.02 to 3.12). Five-year OS was similar between groups (98.1% with combined and 98.4% with PET2 driven therapy). In the GHSG HD17 (2021) trial, median follow-up was 46.2 months (range, 32.7 to 61.2 months).⁵⁶ Five-year PFS was 97.3% in the combined modality treatment group and 95.1% in the PET4-guided treatment group (HR, 0.523; 95% CI, 0.226 to 1.211). The absolute difference between groups was 2.2% (-0.9% to 5.3%), which excluded the 8% noninferiority margin. Five-year OS rates were similar, at approximately 98% in both groups. Five-year PFS was significantly higher in the PET-negative group compared to the PET-positive subgroups (HR, 3.03; 95% CI, 1.10 to 8.33; p=.024). Acute grade 3 or 4 adverse events during chemotherapy were similar between groups; acute grade 3 or 4 radiotherapy-associated adverse events were generally lower in the PET-guided treatment group. The authors concluded that PET4-guided treatment after 2 + 2 chemotherapy can be utilized to omit RT in patients with early-stage unfavorable HL. In the HD18 trial (2017), median follow-up was 66 months (range, 53 to 76 months).⁵⁷ Five-year estimates of PFS and OS were 89.4% (95% CI, 87.9% to 91.0%) and 95.6% (95% CI, 94.6% to 96.6%), respectively, in the intention-to-treat population overall. Among PET2-negative patients, PFS at 5 years was 90.8% (95% CI, 87.9% to 93.7%) in the standard therapy group and 92.2% (95% CI, 89.4% to 95%) in the experimental group, based on per-protocol analysis. The 95% CI for the difference between groups ranged between -2.7% and 5.4%, and thus, excluded the predefined noninferiority margin of -6%. No significant differences were found in PFS or OS when comparing patients with positive and negative PET2 scans (p=.30 and p=.49, respectively). Rates of adverse events, including grade 3 or 4 hematological and organ toxicities, were numerically lower in patients who received fewer cycles of standard therapy. A decrease in the number of treatment cycles was specifically associated with significant decreases in the rate of severe infections (p=.0005), organ toxicities (p<.0001), and treatment-related morbidity (p<.0001). A prespecified long-term analysis of the HD18 trial, conducted at 5 years, supported the initial findings of efficacy and safety associated with PET2-guided treatment of advanced-stage HL.⁶³ Of 434 randomized, PET-positive patients, 5-year PFS was reported to be 89.7% (95% CI, 85.4% to 94%) in the standard treatment group and 88.1% (95% CI, 83.5% to 92.7%) in the standard treatment plus rituximab group (HR, 1.25; 95% CI, 0.69 to 2.26; p=.46). Five-year OS rates were 96.4% and 93.9% in the standard therapy and standard therapy plus rituximab groups, respectively (HR, 1.62; 95% CI, 0.70 to 3.75; p=.25). The authors concluded that addition of rituximab to standard therapy did not result in improvements in survival.⁵⁷

Ricardi et al (2021) published the final results of the Fondazione Italiana Linfomi (FIL) HD0801 trial in patients with advanced-stage HL.⁵⁹ Intention-to-treat analysis showed a 2-year EFS of 87.8% vs. 85.8% for radiotherapy vs. observation (HR, 1.5; 95% CI, 0.6-3.5; p=.34). At 2 years, PFS was 91.3% vs. 85.8% (HR, 1.2; 95% CI, 0.5-3; p=.7). Patients in complete metabolic response randomly assigned to observation had a good outcome, and the primary end point of a 20% benefit in EFS for radiotherapy was not met.

Gallamini et al (2020) published the final results of the GILIT/FIL HD0607 trial.⁵⁸ After a median follow-up of 5.9 years (range, 0.5-10 years), the 6-year PFS rate was similar between radiotherapy (92%) and observation (90%; p=.48). The OS rate was also similar between groups (99% vs. 98%; p=.61). The authors concluded that consolidation radiotherapy could be omitted in patients with advanced HL and negative PET2 and PET6. Results for patients in the PET2-positive group found that escalated therapy was feasible and effective in advanced-stage HL.⁶⁴

In the AHL2011 trial (Casasnovas et al 2019), the median follow-up was 50.4 months.⁶⁰ Five-years PFS was similar between groups when assessed by intention-to-treat (ITT) in all randomized patients with 86.2% in the standard group and 85.7% in the PET-driven group. In those who were PET-negative, the 5-year PFS was 88.4% in the standard treatment group and 89.4% in the PET-drive group. In the ITT population, 5-year overall survival was 95.2% (95% CI, 91.1-97.4) in the standard treatment group and 96.4% (93.3-98.1) in the PET-driven treatment group (HR, 0.936; 95% CI, 0.427-2.051; p=.43). Serious adverse events related to treatment were reported in 47% of patients in the standard group and 28% of patients in the PET-driven group, and were mainly infections (20% and 12%, respectively) and febrile neutropenia (5% and 6%).

In the Johnson et al (2016) trial, median follow-up was 41 months.⁶¹ There were 68 versus 74 events of disease progression, relapse, or death in the standard chemotherapy group versus the PET-directed therapy group, respectively (HR with PET-directed therapy, 1.13; 95% CI, 0.81 to 1.57; p=.48). Three-year PFS rate was 85.7% (95% CI, 82.1% to 88.6%) in the standard chemotherapy group and 84.4% (95% CI, 80.7% to 87.5%) in the PET-directed therapy group (risk difference, 1.6 percentage points; 95% CI, -3.2 to 5.3); CIs included the noninferiority margin. Three-year OS rates were similar in both groups: 97.2% (95% CI, 95.1% to 98.4%) with standard chemotherapy and 97.6% (95% CI, 95.6% to 98.7%) with PET-directed therapy. Grade 3 and 4 respiratory adverse events were more severe in the standard chemotherapy group than in the PET-directed therapy group, and the difference in change in the diffusing capacity of the lung for carbon monoxide from baseline to the completion of therapy was -7.4% (95% CI, -5.1% to -9.7%; p<.001). The Luminari et al (2024) publication was the 7-year safety follow-up for the Johnson et al (2016) trial.⁶² At 7 years, for all patients, overall PFS was 78.2% (95% CI, 75.6 to 80.5) and the OS is 91.6% (95% CI, 89.7 to 93.2). The PFS for the standard chemotherapy group was 81% (95% CI, 76.9 to 84.4) and for PET-directed de-escalated therapy, was 79.2% (95% CI, 75.4 to 82.8). With extended follow-up, these results confirmed noninferiority of treatment de-escalation after a negative PET scan.

In the RAPID (2015) trial, with a median of 60 months of follow-up, 8 instances of disease progression occurred in the RT group (standard therapy), and 8 patients had died (3 with disease progression, 1 of whom died from HL); 20 instances of disease progression occurred in the group with no further therapy (PET-directed therapy), and 4 patients had died (2 with disease progression and none from HL).⁴⁶ The 3-year PFS rate was 95% (95% CI, 91.5% to 97.7%) in

the RT group and 90.8% (95% CI, 86.9% to 94.8%) in the group that received no further therapy; the absolute risk difference was -3.8 percentage points (95% CI, -8.8 to 1.3) and the CIs included the noninferiority margin.

The EORTC/LYSA/FIL H10 (2014) trial, performed a prespecified interim analysis including 1124 randomized patients (favorable group, n=441; unfavorable group, n=683) with a median follow-up of 1.1 years.⁴⁸ In the PET-negative arm, progression or death was more common among patients in PET-guided therapy arms than in standard therapy arms of both groups (5% vs. 0.5%, respectively, in the favorable group; 6% vs. 3%, respectively, in the unfavorable group). Estimated HRs for progression or death were 9.4 (80% CI, 2.5 to 35.7) in the favorable group and 2.4 (80% CI, 1.4 to 4.4) in the unfavorable group. Based on these findings, futility was declared, and accrual to the early PET-negative experimental arm was discontinued. Patients in the PET-directed therapy arm who had a positive early PET scan (after 2 chemotherapy cycles) received intensified chemotherapy.⁴⁸ Available results were presented at the thirteenth International Conference on Malignant Lymphoma in June 2015.⁶⁵ These preliminary results indicated improvement in 5-year PFS rates in the PET-directed arm (91%) versus standard arm (77%; HR=0.42; 95% CI, 0.23 to 0.74; p=.002) and were confirmed in the final results from the trial, published by André et al (2017).⁶⁶

In the Picardi et al (2007) trial, all 80 patients were included in the analysis with a median of 40 months of follow-up.⁴⁷ Events were more common in the PET-directed arm. Eleven (14%) events versus 3 (4%) events were reported, corresponding to an EFS rate of 86% in the PET-directed arm versus 96% in the standard arm (HR for standard therapy, 3.32; 95% CI, 1.13 to 9.76; p=.03). Twenty percent of patients in PET-directed versus 22% in standard therapy experienced hematologic toxicity of at least World Health Organization grade 2. The nonhematologic toxicity (including pneumonitis, cardiovascular abnormality, and peripheral neuropathy) of at least World Health Organization grade 2 was 5% in both groups. No deaths were reported.

Table 10. Summary of Key RCT Trial Results of PET-Guided Therapy in PET-Negative Patients

Study	Primary Outcome	Results (Standard vs. PET-guided ^a ; 95% CI)
Ricardi et al (2021)[Ricardi U, Levis M, Evangelista A, et al. Role of.... (21): 4504-4514. PMID 34597375]; HD0801	EFS	2-y EFS: <ul style="list-style-type: none"> 2-y EFS (radiotherapy vs. observation in PET-negative patients): 87.8% vs. 85.8% HR, 1.5; (0.6 to 3.5; p=.34)
Borchmann et al (2021) ⁵⁶ ; GHSG HD17	PFS	5-y PFS: <ul style="list-style-type: none"> 5-y PFS: 97.3% (94.5% to 98.7%) vs. 95.1% (92% to 97%) HR for PET4-guided therapy, 0.523 (0.226 to 1.211) Between-group difference, 2.2% (-0.9% to 5.3%)
Gallamini et al (2020) ⁵⁸ ; HD0607	PFS	6-y PFS: <ul style="list-style-type: none"> 6-y PFS (radiotherapy vs. observation in PET-negative patients): 92% (88% to 97%) vs. 90% (85% to 95%)
Fuchs et al (2019); ⁵⁵ HD16	PFS	5-y PFS:

Study	Primary Outcome	Results (Standard vs. PET-guided ^a ; 95% CI)
		<ul style="list-style-type: none"> 5-y PFS: 93.4% (90.4% to 96.5%) vs. 86.1% (81.4% to 90.9%) Between-group difference, 7.3% (1.6% to 13.0%) HR for PET2-guided therapy, 1.78 (1.02 to 3.12)
Casasnovas et al (2019) ⁶⁰ ; AHL2011	PFS	<ul style="list-style-type: none"> 5-y PFS (based on all standard patients): 86.2% (81.6% to 89.8%) 5-y PFS (based on at PET-driven patients): 85.7% (81.4% to 89.1%) HR, 1.084 (0.737 to 1.596; p=.65)
Borchmann et al (2017) ⁵⁷ ; HD18	PFS	5-y PFS: <ul style="list-style-type: none"> 5-y PFS: 90.8% (87.9% to 93.7%) vs. 92.2% (89.4% to 95.0%) Between-group difference, 1.4% (-2.7% to 5.4%)
Johnson et al (2016); ⁶¹ Luminari et al (2024) ⁶²	PFS (n=470 vs. n=465)	3-y PFS: 84.4% (80.7% to 87.5%) vs. 85.7% (82.1% to 88.6%) <ul style="list-style-type: none"> HR for ST, 1.13 (0.81 to 1.57) RD for ST, 1.6 (-3.2 to 5.3) 7-y PFS: 81% (76.9% to 84.4%) vs. 79.2% (75.1% to 82.8%) <ul style="list-style-type: none"> HR for ST, 1.10 (0.82 to 1.47)
Radford et al (2015) ⁴⁶ ; RAPID	PFS (n=211 vs. n=209)	<ul style="list-style-type: none"> 3-y PFS: 94.6% (91.5% to 97.7%) vs. 90.8% (86.9% to 94.8%) HR for PET-directed, 0.51 (0.15 to 1.68) RD for PET-directed, -3.8 (-8.8 to 1.3)
Raemaekers et al (2014) ⁴⁸ ; EORTC/LYSA/FIL H10	PFS (favorable: n=188 vs. n=193 ^a ; unfavorable: n=251 vs. n=268 ^a)	Favorable: <ul style="list-style-type: none"> PFS at 1 y: 94.9% vs. 100% 9 vs. 1 events^{b,c} HR for ST, 9.36 (2.45 to 35.73) Unfavorable: <ul style="list-style-type: none"> PFS at 1 y: 94.7% vs. 97.3% 16 vs. 7 events^{b,c} HR for ST, 2.42 (1.35 to 4.36)
Picardi et al (2007) ⁴⁷ ,	EFS	<ul style="list-style-type: none"> EFS: 69 (86%) vs. 77 (96%) HR for ST, 3.32 (1.13 to 9.76)

CI: confidence interval; EFS: event-free survival; HR: hazard ratio; PET: positron emission tomography; PET2/4: PET after 2 or 4 cycles ; PFS: progression-free survival; RCT: randomized controlled trial; RD: risk difference; ST: standard therapy.

^aOr as specified.

^b Results from interim analysis.

^cEvents of progression, relapse, or death.

Section Summary: Hodgkin Lymphoma

Evidence for the validity of using interim FDG-PET as an adjunct to CT consists of a systematic review, which did not identify any studies in HL. Evidence for the utility of interim FDG-PET for guided treatment in patients with HL consists of Cochrane reviews and RCTs. 2025 systematic review identified 10 RCTs evaluating interim PET in patients with HL. The evidence in early- and intermediate-stage was limited; however, the authors concluded that interim-PET has the

potential to increase OS without negatively affecting PFS and long-term adverse events in patients with advanced-stage HL. All 10 RCTs identified were included in the 2025 Cochrane review. Another Cochrane review found moderate-certainty evidence that interim PET scan results predict OS, and very low-certainty evidence that interim PET scan results predict PFS in treated individuals with HL.

INTERIM POSITRON EMISSION TOMOGRAPHY SCANNING FOR NON-HODGKIN LYMPHOMA

Clinical Context and Test Purpose

The purpose of interim PET as an adjunct to interim CT in individuals with non-Hodgkin lymphoma (NHL) is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The population of interest is individuals with NHL.

Interventions

The intervention of interest is interim PET scanning, performed to guide therapy.

Comparators

The following test is currently being used to make decisions about managing patients with NHL who have initiated treatment in order to determine therapeutic response and guide decision making: interim CT.

Outcomes

The general outcomes of interest are QOL, OS, and PFS.

Both false-positive and false-negative results can lead to incorrect treatment recommendations, such as continuing treatment that is ineffective, stopping treatment that is effective, and/or delaying initiation of more appropriate therapy.

The timing is during cycles of chemotherapeutic agents and/or a course of RT.

Table 11. Outcomes of Interest

Outcomes	Details
Change in disease status	Outcomes of interest include patient response and disease progression [Timing: ≥ 1 month]
Morbid events	Outcomes of interest include adverse events such as neutropenia and febrile neutropenia [Timing: ≥ 1 month]

Study Selection Criteria

For the evaluation of clinical validity of interim PET scanning, studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores);
- Included a suitable reference standard;
- Patient/sample clinical characteristics were described;
- Patient/sample selection criteria were described.

Clinically Valid

A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

REVIEW OF EVIDENCE

Systematic Reviews

Adams and Kwee (2016) published a systematic review and meta-analysis calculating false-positive rates of FDG-PET during and at the end of treatment, using biopsy as the reference standard in patients with lymphoma and FDG-avid lesions.⁴⁴ Overall methodologic study quality was moderate, as assessed by the QUADAS-2 tool. Table 8 summarizes the pooled false-positive rates. Reviewers questioned the use of FDG-PET for assessing lymphoma treatment due to high false-positive rates, although the results for interim FDG-PET are based solely on NHL studies. FDG-PET exposes patients to potentially harmful levels of radiation and may provide misinformation leading to incorrect treatment changes and/or unnecessary biopsies.

Table 12. Pooled False-Positive Rates

Treatment	Condition	No. of Studies	False-Positive Rate, %	95% CI, %
Interim FDG-PET	Hodgkin lymphoma	0		
Interim FDG-PET	Non-Hodgkin lymphoma	4	83	72 to 90
End-of-treatment FDG-PET	Hodgkin lymphoma	3	23	5 to 65
End-of-treatment FDG-PET	Non-Hodgkin lymphoma	2	31	4 to 84

CI: confidence interval; FDG-PET: fluorine 18 fluorodeoxyglucose positron emission tomography.

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, more effective therapy, or avoid unnecessary therapy or testing.

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs.

Systematic Reviews

Fonseca et al (2024) published a systematic review of 4 studies evaluating interim PET for patients with follicular lymphoma during frontline chemoimmunotherapy.⁶⁷ PET results were assessed using the Deauville score. A total of 427 patients were included. Positive PET scores were associated with poorer PFS (HR, 2.88; 95% CI, 1.83 to 4.52; $I^2=55.5\%$; $p<.0001$) and OS (HR, 3.32; 95% CI, 1.34 to 8.23; $I^2=74.4\%$; $p=.0097$). None of the included trials were RCTs, and conclusions are limited by the strength of evidence.

Randomized Controlled Trials

A phase 2 RCT by Casasnovas et al (2017) evaluated the use of interim FDG-PET in the treatment of 200 patients with diffuse large B-cell lymphoma.⁶⁸ FDG-PET was conducted after cycles 2 (PET2) and 4 (PET4) of induction therapy. Patients who were PET4-positive ($n=100$) were advised to proceed with a salvage regimen followed by autologous cell transplantation; the final treatment decision was made by the patients and their clinicians. Patients who were PET4-negative ($n=100$) were given different therapies depending on whether the PET2 was negative or positive. PET2- and PET4-negative patients ($n=52$) were treated with 8 cycles of various chemotherapy regimens. PET2-positive and PET4-negative patients ($n=48$) were treated with 3 cycles of different chemotherapy regimens, followed by autologous cell transplantation.

Dührsen et al (2018) evaluated the use of interim FDG-PET in the treatment of NHL in the PETAL (Positron Emission Tomography-Guided Therapy of Aggressive Non-Hodgkin Lymphomas) phase 3 trial.⁶⁹ After 2 cycles of chemotherapy, therapy was adapted based on PET results (evaluated with SUVmax). A total of 108 patients with positive interim scans were randomized to continue current chemotherapy or switch to a more intensive regimen.

Trial characteristics are summarized in Table 13.

Table 13. Summary of Key RCT Characteristics of PET-Guided Therapy in NHL

Study	Countries	Sites	Dates	Participants	Interventions	
Casasnovas et al (2017) ⁶⁸	France	NR	2007-2010	High-risk DLBCL	48 PET2+/ PET4-	52 PET2-/ PET4-
Dührsen et al (2018) ⁶⁹	Germany	NR	2007-2012	Newly diagnosed NHL	52 PET+ standard therapy	56 PEG+ intensive therapy

DLBCL: diffuse large B-cell lymphoma; NHL: non-Hodgkin lymphoma; NR: not reported; PET: positron emission tomography; PET2/4: 2 or 4 cycles of PET; RCT: randomized controlled trial.

In the Casasnovas et al (2017) trial, median follow-up was 45 months (range, 1 to 63 months).⁶⁸ Of the 100 patients who were PET4-negative, 55 progressed or relapsed and 39 died. There was no significant difference in 4-year PFS or OS between the 2 treatment groups. The trialists proposed that the flawed criteria were used to determine PET-positive and -negative

classifications. The International Harmonization Project criteria were used because these criteria were accepted at the time of the trial launch. The International Harmonization Project criteria are now known to generate high false-positive results. The authors suggested that SUVmax may guide treatment decisions more effectively. The trial also included patients who were PET-positive after induction chemotherapy. For patients who were PET-positive after induction therapy, guidance was given to proceed with a salvage regimen followed by autologous cell transplantation, though the final treatment decision was left to the patient's clinician. The 4-year PFS rate was lower in patients who were PET-positive (72.9%; 95% CI, 63.1% to 80.6%) than in patients who were PET-negative following induction therapy (79.8%; 95% CI, 79.4% to 86.4%). The 4-year OS rate was also lower in PET-positive patients (80%; 95% CI, 69.0% to 87.5%) than in PET-negative patients (88.9%; 95% CI, 82.1% to 94.4%). The difference in survival between groups (2.2%; 95% CI, -0.9% to 5.3%) excluded the prespecified noninferiority margin of 8%.

In the Dührsen et al (2018) clinical trial, a total of 108 patients had positive interim PET scans.⁶⁹ Intensified treatment did not improve outcomes at 2 years and resulted in increased toxicity with more grade 3 or 4 hematologic toxicity, infection, and mucositis. Dührsen et al (2024) published long-term results and found that treatment intensification did not improve outcomes at 4 or 10.3 years of follow-up.⁷⁰

Key results of PET-guided RCTs are summarized in Table 14.

Table 14. Summary of Key RCT Trial Results of PET-Guided Therapy in NHL

Study	Primary Outcome	Results (95% CI)
Casasnovas et al (2017) ⁶⁸	PFS and OS (n=48 vs. n=52)	<p>4-y PFS:</p> <ul style="list-style-type: none"> PET2+: 85% (71.1% to 92.6%) PET2-: 75% (60.9% to 84.5%) <p>4-y OS:</p> <ul style="list-style-type: none"> PET2+: 90.4% (81% to 95.1%) PET2-: 89.6% (85% to 92.2%)
Dührsen et al (2018) ⁶⁹	EFS and OS	<p>2-y EFS in PET+:</p> <ul style="list-style-type: none"> Standard: 42.0% (28.2% to 55.2%) Intense: 31.6% (19.3% to 44.6%) HR: 1.501 (0.896 to 2.514) <p>2-y OS in PET+:</p> <ul style="list-style-type: none"> Standard: 63.6% (48.5% to 75.3%) Intense: 55.4% (40.7% to 67.8%) HR: 1.349 (0.756 to 2.406)

CI: confidence interval; EFS: event-free survival; HR: hazard ratio; OS: overall survival; PET: positron emission tomography; PFS: progression-free survival; RCT: randomized controlled trial.

Section Summary: Non-Hodgkin Lymphoma

Evidence for the validity of using interim FDG-PET as an adjunct to CT consists of a systematic review, which has shown high false-positive rates for patients with NHL. Evidence for the utility of interim FDG-PET for guided treatment in patients with lymphoma consists of a systematic review and 2 RCTs. The systematic review did not identify any RCTs. The phase 3 RCT that

evaluated treatment intensification in patients with PET2-positive patients found intensification did not improve survival and increased toxicity.

INTERIM POSITRON EMISSION TOMOGRAPHY SCANNING FOR NON-SMALL-CELL LUNG CANCER

Clinical Context and Test Purpose

The purpose of interim PET as an adjunct to interim CT in individuals with non-small-cell lung cancer (NSCLC) is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The population of interest is individuals with NSCLC.

Interventions

The intervention of interest is interim PET scanning, performed to guide therapy.

Comparators

The following test is currently being used to make decisions about managing patients with NSCLC who have initiated treatment in order to determine therapeutic response and guide decision making: interim CT.

Outcomes

The general outcomes of interest are QOL, OS, and PFS.

Both false-positive and false-negative results can lead to incorrect treatment recommendations, such as continuing treatment that is ineffective, stopping treatment that is effective, and/or delaying initiation of more appropriate therapy.

The timing is during cycles of chemotherapeutic agents and/or a course of RT.

Table 15. Outcomes of Interest

Outcomes	Details
Change in disease status	Outcomes of interest include patient response and disease progression [Timing: ≥ 1 month]
Morbid events	Outcomes of interest include adverse events such as neutropenia and febrile neutropenia [Timing: ≥ 1 month]

Study Selection Criteria

For the evaluation of clinical validity of interim PET scanning, studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores);
- Included a suitable reference standard;
- Patient/sample clinical characteristics were described;

- Patient/sample selection criteria were described.

Clinically Valid

A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

REVIEW OF EVIDENCE

Nonrandomized Studies

Thirteen identified studies have evaluated a potential association between interim FDG-PET analyses during various treatments and OS or PFS in patients with NSCLC.^{71,72,73,74,75,76,77,78,79,80,81,82} The studies included patients with various stages of NSCLC, receiving different lung cancer treatments: chemotherapy, chemoradiotherapy, chemotherapy with or without nitrogen patches, and low-dose fractionated radiotherapy. Most studies found correlations between early metabolic response detected by FDG-PET and survival, thereby suggesting that FDG-PET might be used to personalize treatment for patients with NSCLC. Generalizability of these results is limited due to the heterogeneity across studies, which included patients at various stages of the disease, undergoing various treatment regimens, and receiving FDG-PET during different cycles of treatment.

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, more effective therapy, or avoid unnecessary therapy or testing.

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs. No RCTs were identified assessing interim PET scanning to guide treatment in patients with NSCLC.

Section Summary: Non-Small-Cell Lung Cancer

Evidence for the clinical validity of interim FDG-PET as an adjunct to CT, following various treatments for NSCLC, consists of many small observational nonrandomized studies. The studies were heterogeneous, with different patient populations, different therapies, and different timings of PET assessments. Most studies concluded that FDG-PET might adequately detect responders and nonresponders, which may predict OS and PFS. However, early prediction of survival does not translate into patient benefit unless decisions based on those predictions result in improved patient outcomes by either extending OS or improving QOL.

INTERIM POSITRON EMISSION TOMOGRAPHY SCANNING FOR OVARIAN CANCER

Clinical Context and Test Purpose

The purpose of interim PET as an adjunct to interim CT in individuals with ovarian cancer is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The population of interest is individuals with ovarian cancer.

Interventions

The intervention of interest is interim PET scanning, performed to guide therapy.

Comparators

The following test is currently being used to make decisions about managing patients with ovarian cancer who have initiated treatment in order to determine therapeutic response and guide decision making: interim CT.

Outcomes

The general outcomes of interest are QOL, OS, and PFS.

Both false-positive and false-negative results can lead to incorrect treatment recommendations, such as continuing treatment that is ineffective, stopping treatment that is effective, and/or delaying initiation of more appropriate therapy.

The timing is during cycles of chemotherapeutic agents and/or a course of RT.

Table 16. Outcomes of Interest

Outcomes	Details
Change in disease status	Outcomes of interest include patient response and disease progression [Timing: ≥ 1 month]
Morbid events	Outcomes of interest include adverse events such as neutropenia and febrile neutropenia [Timing: ≥ 1 month]

Study Selection Criteria

For the evaluation of clinical validity of interim PET scanning, studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores);
- Included a suitable reference standard;
- Patient/sample clinical characteristics were described;
- Patient/sample selection criteria were described.

Clinically Valid

A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

REVIEW OF EVIDENCE

Systematic Reviews

Suppiah et al (2017) published a systematic review of the accuracy of PET/CT and PET/MRI in managing patients with ovarian cancer.⁸³ The literature search, conducted through December 2016, identified 9 articles that addressed the use of PET/CT for treatment response and provided HRs for the prediction of recurrence. Outcomes of the studies were metabolic parameters

(SUVmax, MTV, and/or total lesion glycolysis). Six of the 7 studies that measured SUVmax (n=750 patients) reported that it was not a significant indicator of survival. Two of the 3 studies that measured MTV (n=129 patients) reported that it was not a significant indicator of survival. All 4 studies that measured total lesion glycolysis (n=304 patients) reported that it was a significant predictive factor for prognosis. Meta-analyses were not performed.

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, more effective therapy, or avoid unnecessary therapy or testing.

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs. No RCTs were identified assessing interim PET scanning to guide treatment of ovarian cancer.

Section Summary: Ovarian Cancer

Evidence for the use of PET as an adjunct to CT for assessing treatment response in patients with ovarian cancer consists of a systematic review of nonrandomized studies. Although total lesion glycolysis as measured by interim PET appeared to be associated with response and may be better than other methods of prognosis, these studies did not demonstrate whether such improved prediction leads to improved patient outcomes. No case series or comparative trials of risk-adapted treatment for ovarian cancer were identified.

INTERIM POSITRON EMISSION TOMOGRAPHY SCANNING FOR OTHER MALIGNANT SOLID TUMORS

Clinical Context and Test Purpose

The purpose of interim PET as an adjunct to interim CT in individuals with other malignant solid tumors is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The population of interest is individuals with other malignant solid tumors not previously discussed in this review.

Interventions

The intervention of interest is interim PET scanning, performed to guide therapy.

Comparators

The following test is currently being used to make decisions about managing patients with other malignant solid tumors not previously discussed in this review who have initiated treatment in order to determine therapeutic response and guide decision making: interim CT.

Outcomes

The general outcomes of interest are QOL, OS, and PFS.

Both false-positive and false-negative results can lead to incorrect treatment recommendations, such as continuing treatment that is ineffective, stopping treatment that is effective, and/or delaying initiation of more appropriate therapy.

The timing is during cycles of chemotherapeutic agents and/or a course of RT.

Table 17. Outcomes of Interest

Outcomes	Details
Change in disease status	Outcomes of interest include patient response and disease progression [Timing: ≥ 1 month]
Morbid events	Outcomes of interest include adverse events such as neutropenia and febrile neutropenia [Timing: ≥ 1 month]

Study Selection Criteria

For the evaluation of clinical validity of interim PET scanning, studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores);
- Included a suitable reference standard;
- Patient/sample clinical characteristics were described;
- Patient/sample selection criteria were described.

Clinically Valid

A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

REVIEW OF EVIDENCE

Systematic Reviews

Ko et al (2023) published a systematic review and meta-analysis of FDG-PET/CT for assessment of tumor response to neoadjuvant chemotherapy in bladder cancer patients.⁸⁴ Five studies were included in the analysis, and the overall pooled sensitivity for FDG-PET/CT was 0.84 (95% CI, 0.72 to 0.91); the overall pooled specificity was 0.75 (95% CI, 0.59 to 0.86). The overall positive likelihood ratio was 3.3 (95% CI, 2.0 to 5.6); the overall negative likelihood ratio was 0.22 (95% CI, 0.12 to 0.38). The authors noted that there was considerable heterogeneity in the methodological aspects between different studies along with the interpretation criteria of FDG PET/CT of whether a patient was a responder versus nonresponder to therapy.

Singh et al (2018) published a systematic review and meta-analysis of PET imaging in patients with neuroendocrine tumors.⁸⁵ Twenty-two studies (range of participants, n=15 to 728), published between 2007 and 2017, were included in the analysis. Sensitivity of PET or PET/CT for detecting primary and/or metastatic lesions ranged from 78.3% to 100% in the staging and restaging setting, and specificity ranged from 83% to 100%. Change in management occurred in

45% (95% CI 36% to 55%) of patients, the majority of which involved surgical planning and patient selection for peptide receptor radionuclide therapy. The analysis was limited by many included studies being small and lacking a control arm, a high degree of heterogeneity, and most studies consisting of a mixed population of patients with neuroendocrine tumors.

Beckers et al (2018) conducted a PRISMA-based systematic review to assess the value of FDG-PET, FDG-PET/CT, CT, and MRI in predicting response to chemotherapy in colorectal liver metastases.⁸⁶ PubMed and EMBASE databases were searched up to October 2016 to select studies assessing the accuracy of PET, PET/CT, CT, and MRI in predicting RECIST or metabolic response to chemotherapy and/or survival in patients with colorectal liver metastases; 16 studies met inclusion criteria. Results included 6 studies on FDG-PET/CT, 6 studies on CT, and 9 studies on MRI. FDG-PET/CT findings were ambiguous. Meta-analysis could not be conducted due to the heterogeneity of populations, scan protocols, types of chemotherapy, and the use of targeted therapy. The quality of this review was reduced by the lack of histopathology reference standards.

The 2007 and 2009 NCCN task force reports assessed the use of interim PET for other malignant solid tumors. The 2007 report cited a small study of patients with colorectal cancer that showed an association between PET and tumor response to 5-fluorouracil after 1 month of therapy.³⁹ The British National Health Service review (2007) also assessed other cancers for PET during treatment.⁸⁷ For colorectal cancer, 1 study showed that PET after 1 month of chemotherapy predicted the outcome but predictive accuracy was low. For head and neck cancer, esophageal cancer, and melanoma, only studies that evaluated PET after treatment were identified. In total, the British National Health Service review found 22 studies of PET during treatment. Reviewers concluded that many studies were small and evaluated different treatments using a diversity of response targets and monitoring methods. There was little evidence of change in patient management, even anecdotally, and no published evidence of successful applications to drug development.

The 2009 NCCN report⁷⁶, reviewed cancers not discussed in the 2007 report. For most cancers (eg, bladder, prostate, thyroid), evidence for interim PET was not cited. Although the task force included a recommendation for PET to assess response to liver-directed therapies in patients with localized hepatocellular carcinoma, the recommendation was based on studies of PET after transcatheter chemo-embolization and/or radiofrequency ablation (ie, not interim PET).

Since the NCCN and the National Health Service reports, other studies have been reported in patients with colon cancer demonstrating associations between early or interim PET and recurrence or survival outcomes.^{88,89} Evidence in rectal or colorectal cancer was mixed,^{90,91,92,93,94,95} and studies of early (during or after 1 or 2 neoadjuvant chemotherapy cycles) PET to predict axillary lymph node response reported conflicting results.^{96,97} Studies have also reported on associations between early or interim PET during treatment and recurrence or survival outcomes in bladder cancer,⁹⁸ malignant pleural mesothelioma,^{99,100} squamous cell carcinomas of the head and neck,^{101,102,103,104} pancreatic cancer,^{105,106} and bone or soft tissue sarcoma.^{107,108}

Additionally, evidence for advanced renal cell carcinoma was mixed.^{109,110,111,112} The method of measurement of quantitative parameters and cutpoint thresholds for PET-positivity varied across

studies within the same cancer. No study demonstrated the impact of PET-directed treatment on net health outcome.

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, more effective therapy, or avoid unnecessary therapy or testing.

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs. No RCTs were identified assessing interim PET scanning to guide treatment of other malignant solid tumors not previously described in this review.

Section Summary: Other Malignant Solid Tumors

Evidence for the use of interim PET during treatment of other cancers, such as bladder, colorectal, prostate, and thyroid consists of a systematic review, NCCN reports, and mostly single-arm observational studies. Results have been inconsistent with the use of interim PET for patients with colorectal cancer and renal cell carcinoma. While some studies have reported on associations between interim PET and recurrence or survival, a lack of comparative trials of risk-adapted treatment was identified.

SUPPLEMENTAL INFORMATION

The purpose of the following information is to provide reference material. Inclusion does not imply endorsement or alignment with the evidence review conclusions.

Practice Guidelines and Position Statements

Guidelines or position statements will be considered for inclusion in 'Supplemental Information' if they were issued by, or jointly by, a US professional society, an international society with US representation, or National Institute for Health and Care Excellence (NICE). Priority will be given to guidelines that are informed by a systematic review, include strength of evidence ratings, and include a description of management of conflict of interest.

American College of Radiology et al

The American College of Radiology (ACR) and the Society for Pediatric Radiology (2016; amended 2023) updated their joint practice parameter for performing fluorine 18 fluorodeoxyglucose positron emission tomography (FDG-PET) coupled with computed tomography (CT) in oncology.¹¹³ The practice parameter states that examples of indications for FDG-PET/CT include, but are not limited to, the following:

- "Staging on presentation for guiding initial treatment strategy in patients with a known malignancy;
- Monitoring response to therapy to include determining whether residual abnormalities identified with another imaging modality represent persistent viable tumor or posttreatment changes (inflammation, fibrosis, or necrosis);
- Restaging in the setting of relapse;
- Attempting to localize the site of primary tumor when metastatic disease is the initial manifestation of malignancy;

- Verifying and localizing "occult" disease, especially in the presence of clinical indicators such as elevated tumor markers;
- Evaluating an abnormality considered "indeterminate" by another imaging modality to determine whether glucose metabolism in that abnormality favors a benign or malignant process;
- Guiding treatment goals, such as curative versus palliative therapy;
- Guiding biopsy and radiation therapy planning."

European Association of Nuclear Medicine

The European Association of Nuclear Medicine (EANM; 2021) published guidelines on FDG-PET/CT in the management of ovarian cancer, which are endorsed by the American College of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging (SNMMI), and the International Atomic Energy Agency.¹¹⁴ The guidelines acknowledge the lack of clinical trials evaluating the role of FDG-PET scanning when used for assessment of response to therapy in patients with ovarian cancer (Level of evidence, II; grade B recommendation). Further recommendations are not provided.

The EANM published 2024 guidelines for FDG-PET/CT in diagnosis, staging, prognostication, therapy assessment, and restaging of plasma cell disorders.¹¹⁵ The guidelines state the following for therapy assessment in multiple myeloma, "[18F]FDG PET/CT is able to distinguish between metabolically active MM lesions and inactive fibrous residual osteolytic lesions, with an earlier and higher rate of scan normalization than MRI after therapy initiation" per the International Myeloma Working Group.

In 2024, the EANM and SNMMI published joint guidelines on FDG-PET/CT in the management of breast cancer, which are endorsed by the ACR.¹¹⁶ Relevant recommendations are summarized in Table 18.

Table 18. EANM-SNMMI Recommendations for FDG-PET/CT in Breast Cancer

Recommendation	LOE	Grade of recommendation
<i>Indications for FDG-PET/CT</i>		
FDG PET/CT is not recommended in stage I	II	B
FDG PET/CT may be useful in patients with clinical stage IIA (T1N1 or T2N0), but there is not enough strong data to recommend routine use in this subgroup	III	C
FDG PET/CT can be recommended for baseline staging of stage IIB (preferably before surgery) and stage III (including inflammatory breast cancer)	II	B
FDG PET/CT can be done instead of, and not in combination with, conventional imaging modalities for staging (combination of bone scan, chest X-ray or CT-chest, and ultrasound of the liver or CT-abdomen)	II	B
FDG PET/CT is recommended in baseline treatment planning and may improve radiation therapy planning	III	C
FDG PET/CT can be useful for determining the extent of metastatic disease (outside the brain) and improving treatment planning	III	C

Recommendation	LOE	Grade of recommendation
FDG PET/CT can be done instead of, and not in addition to separate conventional imaging modalities (combination of bone scan, chest X-ray or CT-chest, and ultrasound of the liver or CT-abdomen)	II	B
<i>Assessment of treatment response</i>		
FDG PET/CT may be used to assess early metabolic response in non-metastatic breast cancer, particularly in TNBC and HER2 +	II	B
FDG PET/CT may play a role in monitoring treatment response in metastatic breast cancer	III	C
FDG PET/CT may be particularly useful to assess bone metastases and enable early response to treatment evaluation	III	C
<i>Assessment of recurrence</i>		
FDG PET/CT is useful to detect the site and extent of recurrence when conventional imaging methods are equivocal	I	A
FDG PET/CT can be recommended:		
In patients with signs or symptoms suggestive of metastatic disease	I	A
In patients with rising serum tumour markers	II	B
To guide site of biopsy	IV	D
To improve radiation therapy planning	III	C
FDG PET/CT can substitute for CT and/or bone scan in the detection of bone metastases	II	B

CT: computed tomography; EANM: European Association of Nuclear Medicine; FDG: fluorine 18 fluorodeoxyglucose; HER2: human epidermal growth factor receptor 2; LOE: level of evidence; PET: positron emission tomography; SNMMI: Society of Nuclear Medicine and Molecular Imaging; TNBC: triple-negative breast cancer.

National Comprehensive Cancer Network

Current National Comprehensive Cancer Network recommendations for interim PET scanning during treatment to assess early response in a variety of cancers are summarized in Table 15.

Table 19. Recommendations for Interim PET Scanning

Guideline	Version	Recommendation
Bladder cancer ¹¹⁷ ,	1.2025	Interim PET for assessing response to ongoing treatment is not addressed.
Breast cancer ¹¹⁸ ,	4.2025 4	"Studies of functional imaging, such as radionuclide bone scans and PET imaging, are particularly challenging when used to assess response... PET imaging is challenging because of the absence of a reproducible, validated, and widely accepted set of standards for disease activity assessment."
CNS cancers ¹¹⁹ ,	2.2025	Interim PET for assessing response to ongoing treatment is not addressed.
Cervical cancer ¹²⁰ ,	4.2025	Interim PET for assessing response to ongoing treatment is not addressed.
Colon cancer ¹²¹ ,	4.2025	"The panel strongly discourages the routine use of PET/CT scanning for staging, baseline imaging, or routine follow-up." "PET/CT scans should not be used to assess response to chemotherapy because a PET/CT scan can become transiently negative after chemotherapy. False-positive PET/CT scan results can occur in the presence of tissue inflammation after surgery or infection."
Esophageal and EGJ cancers ¹²² ,	4.2025	"Regardless of the cut-off values used,...studies...concluded that FDG-PET is predictive of pathologic response and survival in patients with esophageal cancer who undergo preoperative treatment." "Increased FDG uptake due to radiation-induced inflammation limits the use of FDG-PET for early response assessment of esophageal carcinomas. To reduce the incidence of false-positive results due to inflammation, the guidelines recommend that FDG-PET/CT (preferred) or FDG-PET should be performed at least 5 to 8 weeks after the completion of preoperative therapy. However, the guidelines caution that post-treatment FDG-PET results should not be used to select patients for surgery since FDG-PET cannot distinguish microscopic residual disease."
Soft tissue sarcoma ¹²³ ,	1.2025	Interim PET for assessing response to ongoing treatment is not addressed. "FDG-PET/CT scan may be useful in staging, prognostication, grading, and determining response to neoadjuvant therapy."
Head and neck cancers ¹²⁴ ,	5.2025	Short-term (<6 months) locoregionally advanced disease: "FDG PET/CT should be performed within 3 to 6 months of definitive radiation or systemic therapy/RT for assessment of treatment response and to identify any residual tumor." "Early FDG-PET/CT scans before 12 weeks are associated with significant false-positive rates and should be avoided in the absence of signs of recurrence or progression." "The optimal timing of PET scans after radiation treatment appears to be at the 3- to 6-month window. A negative PET at this time point predicts improved overall survival at 2 years."
Hepatocellular Carcinoma ¹²⁵ ,	1.2025	Interim PET for assessing response to ongoing treatment is not addressed. "PET/CT has limited sensitivity but high specificity, and may be considered when there is an equivocal finding. When HCC is detected by CT or MRI and has increased metabolic activity on PET/CT, higher intralesional standardized uptake value is a marker of biologic aggressiveness and might predict less optimal response to locoregional therapies."

Guideline	Version	Recommendation
Biliary Tract Cancers ¹²⁶ ,	2.2025	Interim PET for assessing response to ongoing treatment is not addressed. "PET/CT has limited sensitivity but high specificity and may be considered when there is an equivocal finding or on a case-by-case basis. The routine use of PET/CT in the preoperative setting has not been established in prospective trials"
Hodgkin lymphoma ¹²⁷ ,	2.2025	"Interim FDG-PET scans can be prognostic and are increasingly being used to assess treatment response during therapy as they can inform treatment adaptation, including treatment escalation and de-escalation. Early interim FDG-PET imaging after chemotherapy has been shown to be a sensitive prognostic indicator of treatment outcome in patients with advanced-stage disease. Interim FDG-PET scans may also be useful to identify a subgroup of patients with early- and advanced-stage disease that can be treated with chemotherapy alone. The NCCN Guidelines emphasize that the value of interim FDG-PET scans remains unclear for some clinical scenarios, and all measures of response should be considered in the context of management decisions. It is important that the Deauville score be incorporated into the nuclear medicine FDG-PET scan report, since subsequent management is often dependent upon that score."
Cutaneous melanoma ¹²⁸ ,	2.2025	Interim PET for assessing response to ongoing treatment is not addressed. "Recent studies in patients with stage III or IV melanoma... indicated that additional information provided by PET/CT may impact treatment decisions in up to 30% of patients, with the greatest impact seen in surgical management."
Malignant pleural mesothelioma ¹²⁹ ,	2.2025	Interim PET for assessing response to ongoing treatment is not addressed.
Multiple myeloma ¹²⁸ ,	2.2026	Interim PET for assessing response to ongoing treatment is not addressed.
Non-Hodgkin lymphoma: B-cell ¹³⁰ ,	3.2025	"Further prospective studies are warranted to determine whether interim PET scans have a role in guiding post-induction therapeutic interventions." "A negative FDG-PET scan after 2 to 4 cycles of induction therapy has been associated with significantly higher EFS and OS rates in several studies. However, interim FDG-PET scans can produce false-positive results and chemoimmunotherapy is associated with a favorable long-term outcome despite a positive interim FDG-PET scan."
Non-Hodgkin lymphoma: T-cell ¹³¹ ,	2.2025	"The guidelines recommend interim restaging with PET/CT (preferred) or CT after 3 to 4 cycles of chemotherapy."
Primary Cutaneous Lymphomas ¹³² ,	3.2025	Interim PET for assessing response to ongoing treatment is not addressed. "FDG-PET/CT or chest/abdomen/pelvis CT with contrast at the end of treatment may be needed to assess response or if there is clinical suspicion of progressive disease."
NSCLC ¹³³ ,	8.2025	Interim PET for assessing response to ongoing treatment is not addressed.
Ovarian cancer ¹³⁴ ,	3.2025	Interim PET for assessing response to ongoing treatment is not addressed. Primary chemotherapy regimens include monitoring with chest/abdominal/pelvic CT or MRI with contrast, PET/CT (skull base to mid-thigh), or PET as indicated ^a

Guideline	Version	Recommendation
Pancreatic adenocarcinoma ¹³⁵	2.2025	Interim PET for assessing response to ongoing treatment is not addressed. "PET/CT or PET/MRI scan may be considered after formal pancreatic CT protocol in patients with high-risk to detect extrapancreatic metastases. It is not a substitute for high-quality, contrast-enhanced CT."
Prostate cancer ¹³⁶	2.2026	"F-18 FDG-PET should not be used routinely, because data are limited in patients with prostate cancer and suggest that its sensitivity is significantly lower than that seen with the above described tracers."
Rectal cancer ¹³⁷	3.2025	"Chest/abdomen/pelvis CT with contrast or chest CT and abdomen/pelvis MRI with contrast to monitor progress of therapy. PET/CT should not be used."
SCLC ¹³⁸	2.2026	"The panel maintains that FDG-PET/CT is not recommended for routine follow-up unless contrast CT chest/abdomen/pelvis or MRI is contraindicated."
Thyroid carcinoma ¹³⁹	1.2025	Interim PET for assessing response to ongoing treatment is not addressed.
Uterine neoplasms ¹⁴⁰	3.2025	Interim PET for assessing response to ongoing treatment is not addressed

CNS: central nervous system; CT: computed tomography; EFS: event-free survival; EGJ: esophagogastric junction; FDG: fluorine 18 fluorodeoxyglucose; HCC: hepatocellular carcinoma; MRI: magnetic resonance imaging; NCCN: National Comprehensive Cancer Network; NSCLC: non-small-cell lung cancer; OS: overall survival; PCBCL: primary cutaneous B-cell lymphoma; PET: positron emission tomography; SCLC: small-cell lung cancer; SUV: standardized uptake value.

^aThis statement is a footnote to epithelial ovarian cancer/fallopian tube cancer/primary peritoneal cancer treatment recommendations

U.S. Preventive Services Task Force Recommendations

Not applicable.

Ongoing and Unpublished Clinical Trials

Ongoing and unpublished trials that might influence this review are listed in Table 20.

Table 20. Summary of Key Trials

NCT No.	Trial Name	Planned Enrollment	Completion Date
<i>Ongoing</i>			
<i>Hodgkin lymphoma</i>			
NCT00943423	A Randomised Phase III Trial to Determine the Role of FDG-PET Imaging in Clinical Stages IA/IIA Hodgkin's Disease	602 (actual)	Dec 2028
<i>NSCLC</i>			
NCT06833229	Prospective Cohort Study Evaluating 18FDG PET-CT for the Early Prediction of the Efficacy of Immunotherapy Associated or Not With Chemotherapy in Patients With Locally Advanced or Metastatic Non-Small Cell Broncho-Pulmonary Carcinoma	200	Jan 2031
<i>Unpublished</i>			

NCT No.	Trial Name	Planned Enrollment	Completion Date
	Non-Hodgkin Lymphoma		
NCT01285765	Randomized Phase III Study Evaluating the Non-inferiority of a Treatment Adapted to the Early Response Evaluated With 18F-FDG PET Compared to a Standard Treatment, for Patients Aged From 18 to 80 Years With Low Risk (aa IPI = 0) Diffuse Large B-cells Non-Hodgkin's Lymphoma CD 20+	650	May 2020
	NSCLC		
NCT02507518	Role of 18FDG PET in the Evaluation of Early Response to Maintenance Treatment With Bevacizumab or Pemetrexed in Advanced Non-small-cell Lung Cancer	80	Mar 2019 (unknown)

NCT: national clinical trial; NSCLC: non-small cell lung cancer;.

CODING

The following codes for treatment and procedures applicable to this policy are included below for informational purposes. This may not be a comprehensive list of procedure codes applicable to this policy.

Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

The code(s) listed below are medically necessary ONLY if the procedure is performed according to the "Policy" section of this document.

CPT/HCPGs	
78811	Positron emission tomography (PET) imaging; limited area (e.g., chest, head/neck)
78812	Positron emission tomography (PET) imaging; skull base to mid-thigh
78813	Positron emission tomography (PET) imaging; whole body
78814	Positron emission tomography (PET) with concurrently acquired computed tomography (CT) for attenuation correction and anatomical localization imaging; limited area (e.g., chest, head/neck)
78815	Positron emission tomography (PET) with concurrently acquired computed tomography (CT) for attenuation correction and anatomical localization imaging; skull base to mid-thigh
78816	Positron emission tomography (PET) with concurrently acquired computed tomography (CT) for attenuation correction and anatomical localization imaging; whole body
G0235	PET imaging, any site, not otherwise specified

REVISIONS	
10-16-2013	PET Scanning in Oncology to Detect Early Response during Treatment was originally part of the Positron Emission Tomography (PET) medical policy. This portion was pulled out and placed into a separate medical policy, Positron Emission Tomography (PET) Scanning: In Oncology to Detect Early Response during Treatment.
10-22-2015	Description section updated Rationale section updated In Coding section: <ul style="list-style-type: none">▪ Added HCPCS Code: G0235▪ Coding notations updated References updated
11-26-2018	Policy published October 26, 2018. Policy effective November 26, 2018. In Description section updated In Policy section: <ul style="list-style-type: none">▪ Added medically necessary indication of "The use of interim florine 18 fluorodeoxyglucose positron emission tomography scans to determine response to tyrosine kinase inhibitor treatment in patients with gastrointestinal stromal tumors is considered medically necessary."

REVISIONS	
	<ul style="list-style-type: none"> Added to Item B "gastrointestinal stromal tumors on palliative or adjuvant therapy, as well as all other" to read "The use of positron emission tomography scans to determine early response to treatment (positron emission tomography scans done during a planned course of chemotherapy and/or radiation) in patients with gastrointestinal stromal tumors on palliative or adjuvant therapy, as well as all other cancers is considered experimental / investigational." <p><u>Rationale section updated</u></p> <p>In Coding section:</p> <ul style="list-style-type: none"> Added ICD-10 Codes: C49.A1, C49.A2, C49.A3, C49.A4, C49.A5, C49.A9 Removed "Experimental / Investigational on all diagnoses related to this medical policy." statement. Updated Coding notations. <p><u>References updated</u></p>
06-12-2020	<p><u>Description section updated</u></p> <p><u>Rationale section updated</u></p> <p><u>References updated</u></p>
12-2-2021	<p><u>Updated Description Section</u></p> <p><u>Updated Rationale Section</u></p> <p><u>Updated References Section</u></p>
12-13-2022	<p><u>Updated Description Section</u></p> <p><u>Updated Rationale Section</u></p> <p><u>Updated Coding Section</u></p> <ul style="list-style-type: none"> Removed Coding bullets <ul style="list-style-type: none"> There is a HCPCS modifier: Modifier PS: PET or PET/ CT to inform the subsequent treatment strategy of cancerous tumors when the beneficiary's treating physician determines that the PET study is needed to inform subsequent antitumor strategy. <p><u>Updated References Section</u></p>
10-24-2023	<p><u>Updated Description Section</u></p> <p><u>Updated Rationale Section</u></p> <p><u>Updated Coding Section</u></p> <ul style="list-style-type: none"> Removed ICD-10 Codes <p><u>Updated References Section</u></p>
10-22-2024	<p><u>Updated Description Section</u></p> <p><u>Updated Rationale Section</u></p> <p><u>Updated References Section</u></p>
01-05-2026	<p><u>Updated Description Section</u></p> <p><u>Updated Policy Section</u></p> <ul style="list-style-type: none"> Added: Section B <ul style="list-style-type: none"> B. The use of interim fluorine 18 fluorodeoxyglucose positron emission tomography scans to assess response during treatment for advanced (stages IIB to 4) Hodgkin lymphoma is considered medically necessary (see Policy Guidelines). <p><u>Updated Rationale Section</u></p> <p><u>Updated Reference Section</u></p>

REFERENCES

1. Hillner BE, Siegel BA, Shields AF, et al. The impact of positron emission tomography (PET) on expected management during cancer treatment: findings of the National Oncologic PET Registry. *Cancer*. Jan 15 2009; 115(2): 410-8. PMID 19016303
2. Food and Drug Administration (FDA). PET Drugs - Current Good Manufacturing Practice (CGMP). 2009; <https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070306.pdf>. Accessed September 14, 2025.
3. Food and Drug Administration (FDA). PET Drugs - Current Good Manufacturing Practice (CGMP) Small Entity Compliance Guide. 2011; <https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM266640.pdf>. Accessed September 15, 2025.
4. Food and Drug Administration (FDA). Guidance: Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs. 2012; <https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM291573.pdf>. Accessed September 16, 2025.
5. Li H, Yao L, Jin P, et al. MRI and PET/CT for evaluation of the pathological response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis. *Breast*. Aug 2018; 40: 106-115. PMID 29758503
6. Lindenberg MA, Miquel-Cases A, Retèl VP, et al. Imaging performance in guiding response to neoadjuvant therapy according to breast cancer subtypes: A systematic literature review. *Crit Rev Oncol Hematol*. Apr 2017; 112: 198-207. PMID 28325260
7. Chen L, Yang Q, Bao J, et al. Direct comparison of PET/CT and MRI to predict the pathological response to neoadjuvant chemotherapy in breast cancer: a meta-analysis. *Sci Rep*. Aug 16 2017; 7(1): 8479. PMID 28814795
8. Boers-Sonderen MJ, de Geus-Oei LF, Desar IM, et al. Temsirolimus and pegylated liposomal doxorubicin (PLD) combination therapy in breast, endometrial, and ovarian cancer: phase Ib results and prediction of clinical outcome with FDG-PET/CT. *Target Oncol*. Dec 2014; 9(4): 339-47. PMID 24577626
9. Groheux D, Hindié E, Giacchetti S, et al. Early assessment with ¹⁸F-fluorodeoxyglucose positron emission tomography/computed tomography can help predict the outcome of neoadjuvant chemotherapy in triple negative breast cancer. *Eur J Cancer*. Jul 2014; 50(11): 1864-71. PMID 24841218
10. Humbert O, Cochet A, Riedinger JM, et al. HER2-positive breast cancer: ¹⁸F-FDG PET for early prediction of response to trastuzumab plus taxane-based neoadjuvant chemotherapy. *Eur J Nucl Med Mol Imaging*. Aug 2014; 41(8): 1525-33. PMID 24647576
11. Andrade WP, Lima EN, Osório CA, et al. Can FDG-PET/CT predict early response to neoadjuvant chemotherapy in breast cancer?. *Eur J Surg Oncol*. Dec 2013; 39(12): 1358-63. PMID 24120422
12. Mghanga FP, Lan X, Bakari KH, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography in monitoring the response of breast cancer to neoadjuvant chemotherapy: a meta-analysis. *Clin Breast Cancer*. Aug 2013; 13(4): 271-9. PMID 23714689
13. Humbert O, Riedinger JM, Charon-Barra C, et al. Identification of Biomarkers Including ¹⁸FDG-PET/CT for Early Prediction of Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. *Clin Cancer Res*. Dec 15 2015; 21(24): 5460-8. PMID 26130460

14. Humbert O, Riedinger JM, Vrigneaud JM, et al. 18F-FDG PET-Derived Tumor Blood Flow Changes After 1 Cycle of Neoadjuvant Chemotherapy Predicts Outcome in Triple-Negative Breast Cancer. *J Nucl Med*. Nov 2016; 57(11): 1707-1712. PMID 27103025
15. Lee HW, Lee HM, Choi SE, et al. The Prognostic Impact of Early Change in 18F-FDG PET SUV After Neoadjuvant Chemotherapy in Patients with Locally Advanced Breast Cancer. *J Nucl Med*. Aug 2016; 57(8): 1183-8. PMID 27033896
16. Luo J, Zhou Z, Yang Z, et al. The Value of 18F-FDG PET/CT Imaging Combined With Pretherapeutic Ki67 for Early Prediction of Pathologic Response After Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer. *Medicine (Baltimore)*. Feb 2016; 95(8): e2914. PMID 26937935
17. Pahk K, Kim S, Choe JG. Early prediction of pathological complete response in luminal B type neoadjuvant chemotherapy-treated breast cancer patients: comparison between interim 18F-FDG PET/CT and MRI. *Nucl Med Commun*. Sep 2015; 36(9): 887-91. PMID 25932536
18. Lin NU, Guo H, Yap JT, et al. Phase II Study of Lapatinib in Combination With Trastuzumab in Patients With Human Epidermal Growth Factor Receptor 2-Positive Metastatic Breast Cancer: Clinical Outcomes and Predictive Value of Early [18F]Fluorodeoxyglucose Positron Emission Tomography Imaging (TBCRC 003). *J Clin Oncol*. Aug 20 2015; 33(24): 2623-31. PMID 26169615
19. Kitajima K, Miyoshi Y, Yamano T, et al. Assessment of tumor response to neoadjuvant chemotherapy in patients with breast cancer using MRI and FDG-PET/CT-RECIST 1.1 vs. PERCIST 1.0. *Nagoya J Med Sci*. May 2018; 80(2): 183-197. PMID 29915436
20. Kitajima K, Nakatani K, Yamaguchi K, et al. Response to neoadjuvant chemotherapy for breast cancer judged by PERCIST - multicenter study in Japan. *Eur J Nucl Med Mol Imaging*. Sep 2018; 45(10): 1661-1671. PMID 29754160
21. Yoon HJ, Kim Y, Chung J, et al. Predicting neo-adjuvant chemotherapy response and progression-free survival of locally advanced breast cancer using textural features of intratumoral heterogeneity on F-18 FDG PET/CT and diffusion-weighted MR imaging. *Breast J*. May 2019; 25(3): 373-380. PMID 29602210
22. Groheux D, Biard L, Giacchetti S, et al. 18F-FDG PET/CT for the Early Evaluation of Response to Neoadjuvant Treatment in Triple-Negative Breast Cancer: Influence of the Chemotherapy Regimen. *J Nucl Med*. Apr 2016; 57(4): 536-43. PMID 26697967
23. Groheux D, Majdoub M, Sanna A, et al. Early Metabolic Response to Neoadjuvant Treatment: FDG PET/CT Criteria according to Breast Cancer Subtype. *Radiology*. Nov 2015; 277(2): 358-71. PMID 25915099
24. van Ramshorst MS, Teixeira SC, Koolen BB, et al. Additional value of 18 F-FDG PET/CT response evaluation in axillary nodes during neoadjuvant therapy for triple-negative and HER2-positive breast cancer. *Cancer Imaging*. May 25 2017; 17(1): 15. PMID 28545563
25. Schmitz AMT, Teixeira SC, Pengel KE, et al. Monitoring tumor response to neoadjuvant chemotherapy using MRI and 18F-FDG PET/CT in breast cancer subtypes. *PLoS One*. 2017; 12(5): e0176782. PMID 28531188
26. Riedl CC, Pinker K, Ulaner GA, et al. Comparison of FDG-PET/CT and contrast-enhanced CT for monitoring therapy response in patients with metastatic breast cancer. *Eur J Nucl Med Mol Imaging*. Aug 2017; 44(9): 1428-1437. PMID 28462446
27. Coudert B, Pierga JY, Mouret-Reynier MA, et al. Use of [(18)F]-FDG PET to predict response to neoadjuvant trastuzumab and docetaxel in patients with HER2-positive breast cancer, and addition of bevacizumab to neoadjuvant trastuzumab and docetaxel in

[(18)F]-FDG PET-predicted non-responders (AVATAHER): an open-label, randomised phase 2 trial. *Lancet Oncol.* Dec 2014; 15(13): 1493-1502. PMID 25456368

28. Coudert B, Pierga JY, Mouret-Reynier MA, et al. Long-term outcomes in patients with PET-predicted poor-responsive HER2-positive breast cancer treated with neoadjuvant bevacizumab added to trastuzumab and docetaxel: 5-year follow-up of the randomised Avataher study. *EClinicalMedicine.* Nov 2020; 28: 100566. PMID 33205032

29. Pérez-García JM, Gebhart G, Ruiz Borrego M, et al. Chemotherapy de-escalation using an 18 F-FDG-PET-based pathological response-adapted strategy in patients with HER2-positive early breast cancer (PHERGain): a multicentre, randomised, open-label, non-comparative, phase 2 trial. *Lancet Oncol.* Jun 2021; 22(6): 858-871. PMID 34019819

30. Pérez-García JM, Cortés J, Ruiz-Borrego M, et al. 3-year invasive disease-free survival with chemotherapy de-escalation using an 18 F-FDG-PET-based, pathological complete response-adapted strategy in HER2-positive early breast cancer (PHERGain): a randomised, open-label, phase 2 trial. *Lancet.* Apr 27 2024; 403(10437): 1649-1659. PMID 38582092

31. Han S, Kim YI, Woo S, et al. Prognostic and predictive values of interim 18 F-FDG PET during neoadjuvant chemoradiotherapy for esophageal cancer: a systematic review and meta-analysis. *Ann Nucl Med.* Apr 2021; 35(4): 447-457. PMID 33471289

32. Cong L, Wang S, Gao T, et al. The predictive value of 18F-FDG PET for pathological response of primary tumor in patients with esophageal cancer during or after neoadjuvant chemoradiotherapy: a meta-analysis. *Jpn J Clin Oncol.* Dec 2016; 46(12): 1118-1126. PMID 27702836

33. van Rossum PSN, Fried DV, Zhang L, et al. The value of 18 F-FDG PET before and after induction chemotherapy for the early prediction of a poor pathologic response to subsequent preoperative chemoradiotherapy in oesophageal adenocarcinoma. *Eur J Nucl Med Mol Imaging.* Jan 2017; 44(1): 71-80. PMID 27511188

34. Hagen PV, Heijl MV, van Berge Henegouwen MI, et al. Prediction of disease-free survival using relative change in FDG-uptake early during neoadjuvant chemoradiotherapy for potentially curable esophageal cancer: A prospective cohort study. *Dis Esophagus.* Feb 01 2017; 30(2): 1-7. PMID 27001344

35. Odawara S, Kitajima K, Katsuura T, et al. Tumor response to neoadjuvant chemotherapy in patients with esophageal cancer assessed with CT and FDG-PET/CT - RECIST 1.1 vs. PERCIST 1.0. *Eur J Radiol.* Apr 2018; 101: 65-71. PMID 29571803

36. Manoharan V, Lee S, Chong S, et al. Serial imaging using [18F]Fluorodeoxyglucose positron emission tomography and histopathologic assessment in predicting survival in a population of surgically resectable distal oesophageal and gastric adenocarcinoma following neoadjuvant therapy. *Ann Nucl Med.* May 2017; 31(4): 315-323. PMID 28299585

37. Goodman KA, Ou FS, Hall NC, et al. Randomized Phase II Study of PET Response-Adapted Combined Modality Therapy for Esophageal Cancer: Mature Results of the CALGB 80803 (Alliance) Trial. *J Clin Oncol.* Sep 01 2021; 39(25): 2803-2815. PMID 34077237

38. Treglia G, Mirk P, Stefanelli A, et al. 18F-Fluorodeoxyglucose positron emission tomography in evaluating treatment response to imatinib or other drugs in gastrointestinal stromal tumors: a systematic review. *Clin Imaging.* 2012; 36(3): 167-75. PMID 22542374

39. Podoloff DA, Advani RH, Allred C, et al. NCCN task force report: positron emission tomography (PET)/computed tomography (CT) scanning in cancer. *J Natl Compr Canc Netw.* May 2007; 5 Suppl 1: S1-22; quiz S23-2. PMID 17509259

40. Helsen N, Van den Wyngaert T, Carp L, et al. FDG-PET/CT for treatment response assessment in head and neck squamous cell carcinoma: a systematic review and meta-analysis of diagnostic performance. *Eur J Nucl Med Mol Imaging*. Jun 2018; 45(6): 1063-1071. PMID 29478080
41. Min M, Lin P, Liney G, et al. A review of the predictive role of functional imaging in patients with mucosal primary head and neck cancer treated with radiation therapy. *J Med Imaging Radiat Oncol*. Feb 2017; 61(1): 99-123. PMID 27469298
42. Castelli J, De Bari B, Depersinge A, et al. Overview of the predictive value of quantitative ¹⁸FDG PET in head and neck cancer treated with chemoradiotherapy. *Crit Rev Oncol Hematol*. Dec 2016; 108: 40-51. PMID 27931839
43. Dos Anjos RF, Dos Anjos DA, Vieira DL, et al. Effectiveness of FDG-PET/CT for evaluating early response to induction chemotherapy in head and neck squamous cell carcinoma: A systematic review. *Medicine (Baltimore)*. Aug 2016; 95(32): e4450. PMID 27512861
44. Adams HJA, Kwee TC. Proportion of false-positive lesions at interim and end-of-treatment FDG-PET in lymphoma as determined by histology: Systematic review and meta-analysis. *Eur J Radiol*. Nov 2016; 85(11): 1963-1970. PMID 27776647
45. Sickinger MT, von Tresckow B, Kobe C, et al. Positron emission tomography-adapted therapy for first-line treatment in individuals with Hodgkin lymphoma. *Cochrane Database Syst Rev*. Jan 09 2015; 1(1): CD010533. PMID 25572491
46. Radford J, Illidge T, Counsell N, et al. Results of a trial of PET-directed therapy for early-stage Hodgkin's lymphoma. *N Engl J Med*. Apr 23 2015; 372(17): 1598-607. PMID 25901426
47. Picardi M, De Renzo A, Pane F, et al. Randomized comparison of consolidation radiation versus observation in bulky Hodgkin's lymphoma with post-chemotherapy negative positron emission tomography scans. *Leuk Lymphoma*. Sep 2007; 48(9): 1721-7. PMID 17786707
48. Raemaekers JM, André MP, Federico M, et al. Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: Clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. *J Clin Oncol*. Apr 20 2014; 32(12): 1188-94. PMID 24637998
49. Kreuzberger N, Goldkuhle M, von Tresckow B, et al. Positron emission tomography-adapted therapy for first-line treatment in adults with Hodgkin lymphoma. *Cochrane Database Syst Rev*. Mar 26 2025; 3(3): CD010533. PMID 40135712
50. Aldin A, Umlauf L, Estcourt LJ, et al. Interim PET-results for prognosis in adults with Hodgkin lymphoma: a systematic review and meta-analysis of prognostic factor studies. *Cochrane Database Syst Rev*. Jan 13 2020; 1(1): CD012643. PMID 31930780
51. Deniz K, O'Mahony S, Ross G, et al. Breast cancer in women after treatment for Hodgkin's disease. *Lancet Oncol*. Apr 2003; 4(4): 207-14. PMID 12681264
52. Travis LB, Gospodarowicz M, Curtis RE, et al. Lung cancer following chemotherapy and radiotherapy for Hodgkin's disease. *J Natl Cancer Inst*. Feb 06 2002; 94(3): 182-92. PMID 11830608
53. Galper SL, Yu JB, Mauch PM, et al. Clinically significant cardiac disease in patients with Hodgkin lymphoma treated with mediastinal irradiation. *Blood*. Jan 13 2011; 117(2): 412-8. PMID 20858859
54. Swerdlow AJ, Higgins CD, Smith P, et al. Myocardial infarction mortality risk after treatment for Hodgkin disease: a collaborative British cohort study. *J Natl Cancer Inst*. Feb 07 2007; 99(3): 206-14. PMID 17284715

55. Fuchs M, Goergen H, Kobe C, et al. Positron Emission Tomography-Guided Treatment in Early-Stage Favorable Hodgkin Lymphoma: Final Results of the International, Randomized Phase III HD16 Trial by the German Hodgkin Study Group. *J Clin Oncol.* Nov 01 2019; 37(31): 2835-2845. PMID 31498753
56. Borchmann P, Plütschow A, Kobe C, et al. PET-guided omission of radiotherapy in early-stage unfavourable Hodgkin lymphoma (GHSG HD17): a multicentre, open-label, randomised, phase 3 trial. *Lancet Oncol.* Feb 2021; 22(2): 223-234. PMID 33539742
57. Borchmann P, Goergen H, Kobe C, et al. PET-guided treatment in patients with advanced-stage Hodgkin's lymphoma (HD18): final results of an open-label, international, randomised phase 3 trial by the German Hodgkin Study Group. *Lancet.* Dec 23 2017; 390(10114): 2790-2802. PMID 29061295
58. Gallamini A, Rossi A, Patti C, et al. Consolidation Radiotherapy Could Be Safely Omitted in Advanced Hodgkin Lymphoma With Large Nodal Mass in Complete Metabolic Response After ABVD: Final Analysis of the Randomized GITIL/FIL HD0607 Trial. *J Clin Oncol.* Nov 20 2020; 38(33): 3905-3913. PMID 32946355
59. Ricardi U, Levis M, Evangelista A, et al. Role of radiotherapy to bulky sites of advanced Hodgkin lymphoma treated with ABVD: final results of FIL HD0801 trial. *Blood Adv.* Nov 09 2021; 5(21): 4504-4514. PMID 34597375
60. Casasnovas RO, Bouabdallah R, Brice P, et al. PET-adapted treatment for newly diagnosed advanced Hodgkin lymphoma (AHL2011): a randomised, multicentre, non-inferiority, phase 3 study. *Lancet Oncol.* Feb 2019; 20(2): 202-215. PMID 30658935
61. Johnson P, Federico M, Kirkwood A, et al. Adapted Treatment Guided by Interim PET-CT Scan in Advanced Hodgkin's Lymphoma. *N Engl J Med.* Jun 23 2016; 374(25): 2419-29. PMID 27332902
62. Luminari S, Fossa A, Trotman J, et al. Long-Term Follow-Up of the Response-Adjusted Therapy for Advanced Hodgkin Lymphoma Trial. *J Clin Oncol.* Jan 01 2024; 42(1): 13-18. PMID 37883739
63. Kreissl S, Goergen H, Buehnen I, et al. PET-guided eBEACOPP treatment of advanced-stage Hodgkin lymphoma (HD18): follow-up analysis of an international, open-label, randomised, phase 3 trial. *Lancet Haematol.* Jun 2021; 8(6): e398-e409. PMID 34048679
64. Gallamini A, Tarella C, Viviani S, et al. Early Chemotherapy Intensification With Escalated BEACOPP in Patients With Advanced-Stage Hodgkin Lymphoma With a Positive Interim Positron Emission Tomography/Computed Tomography Scan After Two ABVD Cycles: Long-Term Results of the GITIL/FIL HD 0607 Trial. *J Clin Oncol.* Feb 10 2018; 36(5): 454-462. PMID 29360414
65. Raemaekers JM. Early FDG-PET adapted treatment improved the outcome of early FDG-PET positive patients with stages I/II Hodgkin lymphoma (HL): final results of the randomized Intergroup EORTC/LYSA/FIL H10 trial. Paper presented at: 13th International Conference on Malignant Lymphoma; 2015; Lugano, Switzerland.
66. André MPE, Girinsky T, Federico M, et al. Early Positron Emission Tomography Response-Adapted Treatment in Stage I and II Hodgkin Lymphoma: Final Results of the Randomized EORTC/LYSA/FIL H10 Trial. *J Clin Oncol.* Jun 01 2017; 35(16): 1786-1794. PMID 28291393
67. Fonseca JM, Zloic SK, Ayogu CI, et al. Deauville Score-Based Evaluation of Interim PET/CT in Follicular Lymphoma: A Prognostic Factor Systematic Review and Meta-Analysis. *Cureus.* Dec 2024; 16(12): e75169. PMID 39759650

68. Casasnovas RO, Ysebaert L, Thieblemont C, et al. FDG-PET-driven consolidation strategy in diffuse large B-cell lymphoma: final results of a randomized phase 2 study. *Blood*. Sep 14 2017; 130(11): 1315-1326. PMID 28701367
69. Dührsen U, Müller S, Hertenstein B, et al. Positron Emission Tomography-Guided Therapy of Aggressive Non-Hodgkin Lymphomas (PETAL): A Multicenter, Randomized Phase III Trial. *J Clin Oncol*. Jul 10 2018; 36(20): 2024-2034. PMID 29750632
70. Dührsen U, Bockisch A, Hertenstein B, et al. Response-guided first-line therapy and treatment of relapse in aggressive lymphoma: 10-year follow-up of the PETAL trial. *Blood Neoplasia*. Sep 2024; 1(3): 100018. PMID 40453056
71. Kanazu M, Maruyama K, Ando M, et al. Early pharmacodynamic assessment using ¹⁸F-fluorodeoxyglucose positron-emission tomography on molecular targeted therapy and cytotoxic chemotherapy for clinical outcome prediction. *Clin Lung Cancer*. May 2014; 15(3): 182-7. PMID 24518101
72. Stefano A, Russo G, Ippolito M, et al. Evaluation of erlotinib treatment response in non-small cell lung cancer using metabolic and anatomic criteria. *Q J Nucl Med Mol Imaging*. May 09 2014. PMID 24809275
73. Tiseo M, Ippolito M, Scarlattei M, et al. Predictive and prognostic value of early response assessment using ¹⁸FDG-PET in advanced non-small cell lung cancer patients treated with erlotinib. *Cancer Chemother Pharmacol*. Feb 2014; 73(2): 299-307. PMID 24258456
74. Tsuchida T, Morikawa M, Demura Y, et al. Imaging the early response to chemotherapy in advanced lung cancer with diffusion-weighted magnetic resonance imaging compared to fluorine-18 fluorodeoxyglucose positron emission tomography and computed tomography. *J Magn Reson Imaging*. Jul 2013; 38(1): 80-8. PMID 23239463
75. Usmanij EA, de Geus-Oei LF, Troost EG, et al. ¹⁸F-FDG PET early response evaluation of locally advanced non-small cell lung cancer treated with concomitant chemoradiotherapy. *J Nucl Med*. Sep 2013; 54(9): 1528-34. PMID 23864719
76. Podoloff DA, Ball DW, Ben-Josef E, et al. NCCN task force: clinical utility of PET in a variety of tumor types. *J Natl Compr Canc Netw*. Jun 2009; 7 Suppl 2: S1-26. PMID 19555588
77. Grootjans W, Usmanij EA, Oyen WJ, et al. Performance of automatic image segmentation algorithms for calculating total lesion glycolysis for early response monitoring in non-small cell lung cancer patients during concomitant chemoradiotherapy. *Radiother Oncol*. Jun 2016; 119(3): 473-9. PMID 27178141
78. Han EJ, Yang YJ, Park JC, et al. Prognostic value of early response assessment using ¹⁸F-FDG PET/CT in chemotherapy-treated patients with non-small-cell lung cancer. *Nucl Med Commun*. Dec 2015; 36(12): 1187-94. PMID 26375438
79. Nygård L, Vogelius IR, Fischer BM, et al. Early lesion-specific (¹⁸)F-FDG PET response to chemotherapy predicts time to lesion progression in locally advanced non-small cell lung cancer. *Radiother Oncol*. Mar 2016; 118(3): 460-4. PMID 26806265
80. Mattoli MV, Massaccesi M, Castelluccia A, et al. The predictive value of ¹⁸ F-FDG PET-CT for assessing the clinical outcomes in locally advanced NSCLC patients after a new induction treatment: low-dose fractionated radiotherapy with concurrent chemotherapy. *Radiat Oncol*. Jan 05 2017; 12(1): 4. PMID 28057034
81. Crandall JP, Tahari AK, Juergens RA, et al. A comparison of FLT to FDG PET/CT in the early assessment of chemotherapy response in stages IB-IIIA resectable NSCLC. *EJNMMI Res*. Dec 2017; 7(1): 8. PMID 28102506
82. Romine PE, Martins RG, Eaton KD, et al. Long term follow-up of neoadjuvant chemotherapy for non-small cell lung cancer (NSCLC) investigating early positron

emission tomography (PET) scan as a predictor of outcome. *BMC Cancer*. Jan 14 2019; 19(1): 70. PMID 30642285

83. Suppiah S, Chang WL, Hassan HA, et al. Systematic Review on the Accuracy of Positron Emission Tomography/Computed Tomography and Positron Emission Tomography/Magnetic Resonance Imaging in the Management of Ovarian Cancer: Is Functional Information Really Needed?. *World J Nucl Med*. 2017; 16(3): 176-185. PMID 28670174

84. Ko WS, Kim SJ. Predictive Value of 18 F-FDG PET/CT for Assessment of Tumor Response to Neoadjuvant Chemotherapy in Bladder Cancer. *Clin Nucl Med*. Jul 01 2023; 48(7): 574-580. PMID 36976654

85. Singh S, Poon R, Wong R, et al. 68Ga PET Imaging in Patients With Neuroendocrine Tumors: A Systematic Review and Meta-analysis. *Clin Nucl Med*. Nov 2018; 43(11): 802-810. PMID 30247209

86. Beckers RCJ, Lambregts DMJ, Lahaye MJ, et al. Advanced imaging to predict response to chemotherapy in colorectal liver metastases - a systematic review. *HPB (Oxford)*. Feb 2018; 20(2): 120-127. PMID 29196021

87. Facey K, Bradbury I, Laking G, et al. Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers. *Health Technol Assess*. Oct 2007; 11(44): iii-iv, xi-267. PMID 17999839

88. Engelmann BE, Loft A, Kjær A, et al. Positron emission tomography/computed tomography and biomarkers for early treatment response evaluation in metastatic colon cancer. *Oncologist*. Feb 2014; 19(2): 164-72. PMID 24451199

89. Hong YS, Kim HO, Kim KP, et al. 3'-Deoxy-3'-18F-fluorothymidine PET for the early prediction of response to leucovorin, 5-fluorouracil, and oxaliplatin therapy in patients with metastatic colorectal cancer. *J Nucl Med*. Aug 2013; 54(8): 1209-16. PMID 23804324

90. Li C, Lan X, Yuan H, et al. 18F-FDG PET predicts pathological response to preoperative chemoradiotherapy in patients with primary rectal cancer: a meta-analysis. *Ann Nucl Med*. Jun 2014; 28(5): 436-46. PMID 24623152

91. Memon S, Lynch AC, Akhurst T, et al. Systematic review of FDG-PET prediction of complete pathological response and survival in rectal cancer. *Ann Surg Oncol*. Oct 2014; 21(11): 3598-607. PMID 24802909

92. Formiga MN, Fanelli MF, Dettino AL, et al. Is early response by (18)F-2-fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography a predictor of long-term outcome in patients with metastatic colorectal cancer?. *J Gastrointest Oncol*. Jun 2016; 7(3): 365-72. PMID 27284468

93. Hendlisz A, Deleporte A, Delaunoit T, et al. The Prognostic Significance of Metabolic Response Heterogeneity in Metastatic Colorectal Cancer. *PLoS One*. 2015; 10(9): e0138341. PMID 26421426

94. Kim SJ, Chang S. Volumetric parameters changes of sequential 18F-FDG PET/CT for early prediction of recurrence and death in patients with locally advanced rectal cancer treated with preoperative chemoradiotherapy. *Clin Nucl Med*. Dec 2015; 40(12): 930-5. PMID 26204222

95. Koo PJ, Kim SJ, Chang S, et al. Interim Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography to Predict Pathologic Response to Preoperative Chemoradiotherapy and Prognosis in Patients With Locally Advanced Rectal Cancer. *Clin Colorectal Cancer*. Dec 2016; 15(4): e213-e219. PMID 27316919

96. García Vicente AM, Soriano Castrejón Á, León Martín A, et al. Early and delayed prediction of axillary lymph node neoadjuvant response by (18)F-FDG PET/CT in patients with locally

advanced breast cancer. *Eur J Nucl Med Mol Imaging*. Jul 2014; 41(7): 1309-18. PMID 24744045

97. Koolen BB, Valdés Olmos RA, Wesseling J, et al. Early assessment of axillary response with ¹⁸F-FDG PET/CT during neoadjuvant chemotherapy in stage II-III breast cancer: implications for surgical management of the axilla. *Ann Surg Oncol*. Jul 2013; 20(7): 2227-35. PMID 23456316

98. Giannatempo P, Alessi A, Miceli R, et al. Interim fluorine-18 fluorodeoxyglucose positron emission tomography for early metabolic assessment of therapeutic response to chemotherapy for metastatic transitional cell carcinoma. *Clin Genitourin Cancer*. Dec 2014; 12(6): 433-9. PMID 24787972

99. Truong MT, Viswanathan C, Godoy MB, et al. Malignant pleural mesothelioma: role of CT, MRI, and PET/CT in staging evaluation and treatment considerations. *Semin Roentgenol*. Oct 2013; 48(4): 323-34. PMID 24034264

100. Francis RJ, Byrne MJ, van der Schaaf AA, et al. Early prediction of response to chemotherapy and survival in malignant pleural mesothelioma using a novel semiautomated 3-dimensional volume-based analysis of serial ¹⁸F-FDG PET scans. *J Nucl Med*. Sep 2007; 48(9): 1449-58. PMID 17704250

101. Bhatnagar P, Subesinghe M, Patel C, et al. Functional imaging for radiation treatment planning, response assessment, and adaptive therapy in head and neck cancer. *Radiographics*. 2013; 33(7): 1909-29. PMID 24224586

102. Hoang JK, Das SK, Choudhury KR, et al. Using FDG-PET to measure early treatment response in head and neck squamous cell carcinoma: quantifying intrinsic variability in order to understand treatment-induced change. *AJNR Am J Neuroradiol*. Jul 2013; 34(7): 1428-33. PMID 23391836

103. Lalami Y, Garcia C, Flamen P, et al. Phase II trial evaluating the efficacy of sorafenib (BAY 43-9006) and correlating early fluorodeoxyglucose positron emission tomography-CT response to outcome in patients with recurrent and/or metastatic head and neck cancer. *Head Neck*. Mar 2016; 38(3): 347-54. PMID 25332069

104. Wong KH, Panek R, Welsh L, et al. The Predictive Value of Early Assessment After 1 Cycle of Induction Chemotherapy with ¹⁸F-FDG PET/CT and Diffusion-Weighted MRI for Response to Radical Chemoradiotherapy in Head and Neck Squamous Cell Carcinoma. *J Nucl Med*. Dec 2016; 57(12): 1843-1850. PMID 27417648

105. Wilson JM, Mukherjee S, Brunner TB, et al. Correlation of ¹⁸F-Fluorodeoxyglucose Positron Emission Tomography Parameters with Patterns of Disease Progression in Locally Advanced Pancreatic Cancer after Definitive Chemoradiotherapy. *Clin Oncol (R Coll Radiol)*. Jun 2017; 29(6): 370-377. PMID 28190636

106. Evangelista L, Zucchetta P, Moletta L, et al. The role of FDG PET/CT or PET/MRI in assessing response to neoadjuvant therapy for patients with borderline or resectable pancreatic cancer: a systematic literature review. *Ann Nucl Med*. Jul 2021; 35(7): 767-776. PMID 34047926

107. Eary JF, Conrad EU, O'Sullivan J, et al. Sarcoma mid-therapy [¹⁸F]-fluorodeoxyglucose positron emission tomography (FDG PET) and patient outcome. *J Bone Joint Surg Am*. Jan 15 2014; 96(2): 152-8. PMID 24430415

108. Hyun O J, Luber BS, Leal JP, et al. Response to Early Treatment Evaluated with ¹⁸F-FDG PET and PERCIST 1.0 Predicts Survival in Patients with Ewing Sarcoma Family of Tumors Treated with a Monoclonal Antibody to the Insulinlike Growth Factor 1 Receptor. *J Nucl Med*. May 2016; 57(5): 735-40. PMID 26795289

109. Farnebo J, Grybäck P, Harmenberg U, et al. Volumetric FDG-PET predicts overall and progression-free survival after 14 days of targeted therapy in metastatic renal cell carcinoma. *BMC Cancer*. Jun 06 2014; 14: 408. PMID 24906441
110. Chen JL, Appelbaum DE, Kocherginsky M, et al. FDG-PET as a predictive biomarker for therapy with everolimus in metastatic renal cell cancer. *Cancer Med*. Aug 2013; 2(4): 545-52. PMID 24156027
111. Gilles R, de Geus-Oei LF, Mulders PF, et al. Immunotherapy response evaluation with (18)F-FDG-PET in patients with advanced stage renal cell carcinoma. *World J Urol*. Aug 2013; 31(4): 841-6. PMID 21739122
112. Horn KP, Yap JT, Agarwal N, et al. FDG and FLT-PET for Early measurement of response to 37.5 mg daily sunitinib therapy in metastatic renal cell carcinoma. *Cancer Imaging*. Sep 03 2015; 15(1): 15. PMID 26335224
113. American College of Radiology (ACR)-ACNM-SNMMI-SPR. ACR-ACNM-SNMMI-SPR practice parameter for performing FDG-PET/CT in oncology, amended 2023. <https://gravitas.acr.org/PPTS/GetDocumentView?docId=173>. Accessed September 16, 2025.
114. Delgado Bolton RC, Aide N, Colletti PM, et al. EANM guideline on the role of 2-[18 F]FDG PET/CT in diagnosis, staging, prognostic value, therapy assessment and restaging of ovarian cancer, endorsed by the American College of Nuclear Medicine (ACNM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI) and the International Atomic Energy Agency (IAEA). *Eur J Nucl Med Mol Imaging*. Sep 2021; 48(10): 3286-3302. PMID 34215923
115. Nanni C, Deroose CM, Balogova S, et al. EANM guidelines on the use of [18 F]FDG PET/CT in diagnosis, staging, prognostication, therapy assessment, and restaging of plasma cell disorders. *Eur J Nucl Med Mol Imaging*. Dec 2024; 52(1): 171-192. PMID 39207486
116. Vaz SC, Woll JPP, Cardoso F, et al. Joint EANM-SNMMI guideline on the role of 2-[18 F]FDG PET/CT in no special type breast cancer : (endorsed by the ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA). *Eur J Nucl Med Mol Imaging*. Jul 2024; 51(9): 2706-2732. PMID 38740576
117. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Bladder Cancer. Version 1.2025. https://www.nccn.org/professionals/physician_gls/pdf/bladder.pdf. Accessed September 13, 2025.
118. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Breast Cancer. Version 4.2025. https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Accessed September 16, 2025.
119. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Central Nervous System Cancers. Version 2.2025. https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf. Accessed September 12, 2025.
120. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Cervical Cancer. Version 4.2025. https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf. Accessed September 11, 2025.
121. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Colon Cancer. Version 4.2025.

https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed September 10, 2025.

122. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Esophageal and Esophagogastric Junction Cancers. Version 4.2025.
https://www.nccn.org/professionals/physician_gls/pdf/esophageal.pdf. Accessed September 8, 2025.

123. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Soft Tissue Sarcoma. Version 1.2025.
https://www.nccn.org/professionals/physician_gls/pdf/sarcoma.pdf. Accessed August 27, 2025.

124. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Head and Neck Cancers. Version 5.2025.
https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf. Accessed September 7, 2025.

125. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Hepatocellular Carcinoma. Version 1.2025.
https://www.nccn.org/professionals/physician_gls/pdf/hcc.pdf. Accessed September 6, 2025.

126. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Biliary Tract Cancers. Version 2.2025.
https://www.nccn.org/professionals/physician_gls/pdf/btc.pdf. Accessed September 14, 2025.

127. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Hodgkin Lymphoma. Version 2.2025.
https://www.nccn.org/professionals/physician_gls/pdf/hodgkins.pdf. Accessed September 5, 2025.

128. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Cutaneous Melanoma. Version 2.2025.
https://www.nccn.org/professionals/physician_gls/pdf/cutaneous_melanoma.pdf. Accessed September 9, 2025.

129. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Malignant Pleural Mesothelioma. Version 2.2025.
https://www.nccn.org/professionals/physician_gls/pdf/meso_pleural.pdf. Accessed September 17, 2025.

130. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: B-Cell Lymphomas. Version 3.2025.
https://www.nccn.org/professionals/physician_gls/pdf/b-cell.pdf. Accessed September 15, 2025.

131. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: T-Cell Lymphomas. Version 2.2025.
https://www.nccn.org/professionals/physician_gls/pdf/t-cell.pdf. Accessed August 26, 2025.

132. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Primary Cutaneous Lymphomas. Version 3.2025.
https://www.nccn.org/professionals/physician_gls/pdf/primary_cutaneous.pdf. Accessed August 31, 2025.

133. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Non-Small Cell Lung Cancer. Version 8.2025.

https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Accessed September 3, 2025.

134. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Ovarian Cancer. Version 3.2025.
https://www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf. Accessed September 2, 2025.

135. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Pancreatic Adenocarcinoma. Version 2.2025.
https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf. Accessed September 1, 2025.

136. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Prostate Cancer. Version 2.2026.
https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed August 30, 2025.

137. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Rectal Cancer. Version 3.2025.
https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf. Accessed August 29, 2025.

138. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Small Cell Lung Cancer. Version 2.2026.
https://www.nccn.org/professionals/physician_gls/pdf/sclc.pdf. Accessed August 28, 2025.

139. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Thyroid Carcinoma. Version 1.2025.
https://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf. Accessed August 25, 2025.

140. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Uterine Neoplasms. Version 3.2025.
https://www.nccn.org/professionals/physician_gls/pdf/uterine.pdf. Accessed August 24, 2025.

141. Centers for Medicare & Medicaid Services. National Coverage Determination (NCD) for Positron Emission Tomography (FDG) for Oncologic Conditions (220.6.17). 2014;
<https://www.cms.gov/medicare-coverage-database/details/ncd-details.aspx?ncdid=331>. Accessed September 16, 2025.

OTHER REFERENCES

1. Blue Cross and Blue Shield of Kansas, Medical Advisory Committee meeting, April 24, 2003 (see Blue Cross and Blue Shield of Kansas Newsletter, Blue Shield Report MAC-02-03).
2. Blue Cross and Blue Shield of Kansas, Oncology Liaison Committee meeting, February 18, 2003 (see Blue Cross and Blue Shield of Kansas Newsletter, Blue Shield Report MAC-02-03).
3. Blue Cross and Blue Shield of Kansas, Radiology Liaison Committee meeting, February 11, 2003 (see Blue Cross and Blue Shield of Kansas Newsletter, Blue Shield Report MAC-02-03).
4. MCMC, Medical Care Ombudsman Program (MCOP), August 11, 2006, MCOP ID 1071-0720.

5. Considine oncology consultant (#372), January 23, 2007, Reference: Semin Nucl Med. 2006 Jan; 36(1):93-104. Links Positron emission tomography in gynecologic cancer. Yen TC, Lai CH.
6. Blue Cross and Blue Shield of Kansas Radiology Liaison Committee, February 2009.