Title: Cardiac Rehabilitation in the Outpatient Setting

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
</table>
| Individuals: *With diagnosed heart disease* | Interventions of interest are:
• Outpatient cardiac rehabilitation | Comparators of interest are:
• Standard management without cardiac rehabilitation | Relevant outcomes include:
• Overall survival
• Disease-specific survival
• Symptoms
• Morbid events |
| Individuals: *With diagnosed heart disease without a second event* | Interventions of interest are:
• Repeat outpatient cardiac rehabilitation | Comparators of interest are:
• Single course of outpatient cardiac rehabilitation | Relevant outcomes include:
• Overall survival
• Disease-specific survival
• Symptoms
• Morbid events |

State and Federal mandates and health plan member contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. To verify a member's benefits, contact Blue Cross and Blue Shield of Kansas Customer Service.

The BCBSKS Medical Policies contained herein are for informational purposes and apply only to members who have health insurance through BCBSKS or who are covered by a self-insured group plan administered by BCBSKS. Medical Policy for FEP members is subject to FEP medical policy which may differ from BCBSKS Medical Policy.

The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents of Blue Cross and Blue Shield of Kansas and are solely responsible for diagnosis, treatment and medical advice.

If your patient is covered under a different Blue Cross and Blue Shield plan, please refer to the Medical Policies of that plan.
DESCRIPTION
Cardiac rehabilitation refers to comprehensive medically supervised programs in the outpatient setting that aim to improve the function of patients with heart disease and prevent future cardiac events. National organizations have specified core components to be included in cardiac rehabilitation programs.

OBJECTIVE
The objective of this policy is to evaluate whether outpatient cardiac rehabilitation programs improve the health outcomes in patients with heart disease.

BACKGROUND
Heart Disease
Heart disease is the leading cause of mortality in the U.S., causing more than half of all deaths. Coronary artery disease (CAD) is the most common cause of heart disease. In a 2015 update on heart disease and stroke statistics from the American Heart Association, it was estimated that 635,000 Americans have a new coronary attack (first hospitalized myocardial infarction or coronary heart disease death) and 300,000 have a recurrent attack annually.¹ Both CAD and various other disorders—structural heart disease and other genetic, metabolic, endocrine, toxic, inflammatory, and infectious causes—can lead to the clinical syndrome of heart failure, of which there are about 650,000 new cases in the U.S. annually. Given the disease burden of heart disease, preventing secondary cardiac events and treating the symptoms of heart disease and heart failure have received much attention from national organizations.

In 1995, the U.S. Public Health Service (USPHS) defined cardiac rehabilitation services as, in part, “comprehensive, long-term programs involving medical evaluation, prescribed exercise, cardiac risk factor modification, education, and counseling. These programs are designed to limit the physiologic and psychological effects of cardiac illness, reduce the risk for sudden death or reinfarction, control cardiac symptoms, stabilize or reverse the atherosclerotic process, and enhance the psychosocial and vocational status of selected patients.” This USPHS guideline recommended cardiac rehabilitation services for patients with coronary heart disease (CHD) and with heart failure, including those awaiting or following cardiac transplantation. A 2010 definition of cardiac rehabilitation by the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation is as follows: “Cardiac rehabilitation can

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals: • With diagnosed heart disease</td>
<td>Interventions of interest are: • Intensive cardiac rehabilitation with the Ornish Program for Reversing Heart Disease</td>
<td>Comparators of interest are: • Standard outpatient cardiac rehabilitation</td>
<td>Relevant outcomes include: • Overall survival • Disease-specific survival • Symptoms • Morbid events</td>
</tr>
<tr>
<td>Individuals: • With diagnosed heart disease</td>
<td>Interventions of interest are: • Intensive cardiac rehabilitation with the Pritikin Program</td>
<td>Comparators of interest are: • Standard outpatient cardiac rehabilitation</td>
<td>Relevant outcomes include: • Overall survival • Disease-specific survival • Symptoms • Morbid events</td>
</tr>
</tbody>
</table>
be viewed as the clinical application of preventive care by means of a professional multi-
disciplinary integrated approach for comprehensive risk reduction and global long-term
care of cardiac patients.”3 Since the release of the USPHS guideline, other societies,
including the American Heart Association4 and the Heart Failure Society of America5
have developed guidelines about the role of cardiac rehabilitation in patient care.

REGULATORY STATUS

Not applicable.

POLICY

A. Outpatient cardiac rehabilitation programs are considered medically necessary for
patients with a history of the following conditions and procedures:
1. An acute myocardial infarction (MI) (heart attack) within the preceding 12 months; OR
2. A coronary artery bypass graft (CABG) surgery; OR
3. Current stable angina pectoris; OR
4. Heart valve surgery; OR
5. Percutaneous transluminal coronary angioplasty (PTCA) or coronary stenting; OR
6. A heart or heart-lung transplant; OR

B. Repeat participation in an outpatient cardiac rehabilitation program in the absence
of another qualifying cardiac event is considered experimental / investigational.

C. Intensive cardiac rehabilitation with the Ornish Program for Reversing Heart Disease
or Pritikin Program is considered experimental / investigational.

D. Physical and/or occupational therapy are not medically necessary in conjunction
with cardiac rehabilitation unless performed for an unrelated diagnosis.

Policy Guidelines
1. Cardiac rehabilitation programs must include the following components:
a. Physician-prescribed exercise each day cardiac rehabilitation items and services
are furnished;
b. Cardiac risk factor modification;
c. Psychosocial assessment;
d. Outcomes assessment; and
e. An individualized treatment plan detailing how each of the above components
are utilized.
2. Cardiac rehabilitation items and services must be furnished in a physician’s office or
a hospital outpatient setting.
3. All settings must have a physician immediately available and accessible for medical
consultations and emergencies at all time items and services are being furnished
under the program.
4. **Duration of the Program:**
A cardiac rehabilitation exercise program is eligible for BCBSKS members, services provided in connection with an approved cardiac rehabilitation exercise program may be considered reasonable and necessary for up to 18 sessions, usually 3 sessions a week in a single 6-week period. Coverage for continued participation would be allowed only on a case-by-case basis with exit criteria taken into consideration. It is preferable that programs start within 90 days of the cardiac event and be completed within 6 months of the cardiac event.

5. A comprehensive evaluation may be performed before initiation of cardiac rehabilitation to evaluate the patient and determine an appropriate exercise program. In addition to a medical examination, an electrocardiogram stress test may be performed. An additional stress test may be performed at the completion of the program.

RATIONALE
The most recent literature review was from through May 31, 2017. The following is a description of the key literature to date.

Outpatient Cardiac Rehabilitation for Heart Disease
Many randomized controlled trials (RCTs) have been published comparing cardiac rehabilitation with usual care for patients with established heart disease, and a number of meta-analyses of RCTs have been performed, which are the focus of this review. Systematic reviews that include observational studies are also discussed.

Systematic Reviews of RCTs
In 2012, Oldridge identified 6 independent meta-analyses published since 2000 that reported outcomes from RCTs after cardiac rehabilitation interventions. The RCTs included in the meta-analyses enrolled patients with myocardial infarction (MI), coronary heart disease (CHD), angina, percutaneous coronary intervention (PCI) and/or coronary artery bypass graft (CABG). RCTs compared cardiac rehabilitation programs (exercise only and/or comprehensive rehabilitation) with usual care. Cardiac rehabilitation was associated with a statistically significant ($p<0.05$) reduction in all-cause mortality in 4 of the 5 meta-analyses that reported this outcome. In pooled analysis, cardiac rehabilitation was associated with a 18.5% mean reduction in all-cause mortality. In addition, cardiac rehabilitation was associated with a statistically significant reduction in cardiac mortality in 3 of the 4 meta-analyses that reported disease-specific mortality as an outcome.

Two of the meta-analyses on cardiac rehabilitation were conducted by the Cochrane collaboration. One of these included patients with CHD and the other focused on patients with systolic heart failure. Both reviews addressed exercise-based cardiac rehabilitation programs (exercise alone or as part of comprehensive program).

In 2016, Anderson et al updated the earlier Cochrane review (published in 2011), which addressed exercise-based cardiac rehabilitation for individuals with CHD. The review included RCTs of exercise-based interventions with at least 6 months of follow-up compared with no-exercise controls in patients with MI, CABG, or PCI, or with angina pectoris or coronary artery disease. The updated review included 63 RCTs with a total of 14,486 individuals, of which 16...
trials were new since the last update. The authors reported that the overall risk of bias was unclear, although the quality of reporting improved with more recent trials. Due to the nature of the intervention, patients were not blinded to treatment group in any of the studies, but 16 (25%) of 62 studies reported details of blinded assessment of study outcomes. In pooled analysis, cardiac rehabilitation was not significantly associated with overall mortality. However, among 27 studies, cardiac rehabilitation was significantly associated with reduced cardiovascular mortality (292/3850 for cardiac rehabilitation subjects vs 375/3619 for control subjects; relative risk [RR], 0.74; 95% confidence interval [CI], 0.64 to 0.86). Rates of MI, CABG, and PCI were not significantly associated with receiving cardiac rehabilitation.

A 2014 Cochrane review by Taylor et al reported on studies assessing cardiac rehabilitation in patients with heart failure.10 Reviewers included 33 trials (total N=4740 individuals), with 14 studies added with the latest update. One large trial (HF-ACTION) contributed 50% of patients; most other studies were small and single center. The population was predominantly patients with heart failure with reduced ejection fraction and New York Heart Association class II and III heart failure. The trials had a moderate risk of bias; many earlier studies (particularly pre-2000) had insufficient detail to permit assessment of risk of bias. In the 25 studies that reported all-cause mortality up to 12-month follow-up, there was no difference in pooled mortality between groups (RR=0.93; 95% CI, 0.69 to 1.27; p=0.59). For health-related quality of life (QOL), most studies reported disease-specific QOL with the Minnesota Living With Heart Failure (MLWHF) questionnaire. Although there was statistical heterogeneity in the differences in MLWHF scores between exercise and control groups, there was a significant improvement in MLWHF scores with exercise in pooled analysis (mean difference, -5.8; 95% CI, -9.2 to -2.4, p=0.001). Most studies selected for the Cochrane review, including the HF-ACTION trial, were exercise-only interventions; thus, conclusions cannot be drawn from this review about the impact of comprehensive cardiac rehabilitation programs on mortality or hospital admissions in patients with heart failure. Reviewers did not require that studies only include patients with compensated heart failure.

Systematic Reviews of Observational Studies
In 2017, Sumner et al published a systematic review of controlled observational studies evaluating cardiac rehabilitation in patients diagnosed with acute MI.11 Cardiac rehabilitation interventions consisted of structured multicomponent programs that included exercise in addition to at least one of the following: education, information, health behavior change, and psychological or social support. Usual care interventions, generally supervised medical interventions, were the control conditions. Ten studies met reviewers’ eligibility criteria. In a meta-analysis of 5 studies reporting all-cause mortality (unadjusted outcome), there was a significantly lower risk of death in the group that received cardiac rehabilitation (odds ratio [OR], 0.25; 95% CI, 0.16 to 0.40). Three studies that reported an adjusted analysis of all-cause mortality also found a significant benefit from cardiac rehabilitation (OR=0.47; 95% CI, 0.38 to 0.59). Similarly, a meta-analysis of 3 studies reporting cardiac-related mortality (unadjusted analysis) found a significant benefit from cardiac rehabilitation (OR=0.21; 95% CI, 0.12 to 0.37). Only 1 study reported an adjusted analysis of cardiac-related mortality so data could not be pooled.

Randomized Controlled Trials
Overall, the evidence from well-conducted systematic reviews suggests that cardiac rehabilitation is associated with reduced cardiovascular mortality in patients with CHD.
Findings of a large, multicenter RCT from the U.K., which evaluated the effectiveness of cardiac rehabilitation in a “real-life” setting, were published by West et al in 2012.12 Called the Rehabilitation After Myocardial Infarction Trial (RAMIT), the study included patients from 14 centers with established cardiac rehabilitation programs that were multifactorial (including exercise, education, and counseling), involved more than 1 discipline, and provided an intervention lasting a minimum of 10 hours. A total of 1813 patients were randomized—903 to cardiac rehabilitation and 910 to a control condition. Vital status was obtained at 2 years for 99.9% (all but 1 patient) and at 7 to 9 years for 99.4% of patients. By 2 years, 166 patients had died, 82 in the cardiac rehabilitation group and 84 in the control group. The between-group difference in mortality at 2 years (the primary study outcome) was not statistically significant (RR=0.98; 95% CI, 0.74 to 1.30). After 7 to 9 years, 488 patients had died, 245 in the cardiac rehabilitation group and 243 in the control group (RR=0.99; 95% CI, 0.85 to 1.15). In addition, at 1 year, cardiovascular morbidity did not differ significantly between groups. For a combined end point including death, nonfatal MI, stroke, or revascularization, the relative risk was 0.96 (95% CI, 0.88 to 1.07). In discussing the study's negative findings, the trial authors noted that medical management of heart disease has improved over time, and patients in the control group may have had better outcomes than in earlier RCTs on this topic. Moreover, an editorial accompanying the publication of the study’s findings emphasized that RAMIT was not an efficacy trial, but rather, a trial evaluating the effectiveness of actual cardiac rehabilitation programs in the U.K. Finally, these results may in part reflect the degree to which clinically based cardiac rehabilitation programs in the U.K. differ from the treatment protocols used in RCTs based in research settings.

A concern raised by the negative findings in the RAMIT trial is that most of the RCTs evaluating cardiac rehabilitation were conducted in an earlier era of heart disease management and may not be relevant to current care. However, RAMIT's results, along with 15 additional RCTs reported since a 2011 Cochrane review, were included in the updated 2016 Cochrane review, which found improvements in cardiovascular mortality associated with exercise-based cardiac rehabilitation.

Section Summary: Outpatient Cardiac Rehabilitation for Heart Disease
A number of RCTs, systematic reviews of RCTs, and/or observational studies have evaluated outpatient cardiac rehabilitation in patients with heart disease. An overview of 6 meta-analyses found a statistically significant association between cardiac rehabilitation and all-cause mortality and/or cardiac mortality. The available evidence has limitations, including lack of blinded outcome assessment, but, for the survival-related outcomes of interest, this limitation is less critical.

Repeat Outpatient Cardiac Rehabilitation
No studies were identified that evaluated the effectiveness of repeat participation in a cardiac rehabilitation program.

Intensive Cardiac Rehabilitation for Heart Disease
There is no standard definition for an intensive cardiac rehabilitation program and, thus, specific programs will be reviewed individually. Two programs have been evaluated by Centers for Medicare & Medicaid Services (CMS) and we describe the published evidence supporting these programs next. The ideal study would be an RCT comparing the impact of intensive cardiac rehabilitation and standard cardiac rehabilitation on health outcomes.
Ornish Program for Reversing Heart Disease
Ornish et al conducted an RCT, called the Lifestyle Heart Trial, comparing a version of the Ornish Program for Reversing Heart Disease with usual care. Initial results were reported in 1990 and 5-year results in 1998. Eligibility for the trial included diagnosed coronary artery disease, left ventricular ejection fraction greater than 25%, no MI during the previous 6 weeks, no scheduled for CABG, and not taking lipid-lowering medication. Ninety-four eligible patients were randomized to an intervention group (n=53) or to a usual care control group (n=43). Final consenting was done after randomization; 28 (53%) of patients assigned to the intervention group and 20 (43%) assigned to the control group agreed to participate in the trial.

The Lifestyle intervention consisted of recommending a low-fat vegetarian diet and an individualized exercise regimen. In addition, patients were taught stress management techniques and were taught to practice them at home for at least an hour a day. In addition, twice-weekly group discussions were offered to provide social support. It is not clear how long patients attended these group discussion (ie, the number of weeks or months). As reported by Ornish et al (1990), the mean percentage diameter stenosis decreased from 40% at baseline to 37.8% at 1 year in the intervention group and increased from 42.7% to 46.1% in the control group (p=0.001). The frequency and duration of chest pain did not differ between groups. However, during chest pain episodes, at 1 year, the intervention group reported mean chest pain severity of 1.7 (on a 7-point scale) whereas the mean score in the control group was 2.5 (p<0.001).

Twenty (71%) of 28 patients in the intervention group and 15 (75%) of 20 in the control group completed 5-year follow-up. The intervention and control groups did not differ significantly in the number of MI events (2 vs 4), CABGs (2 vs 5), or deaths (2 vs 1). However, the intervention group, compared with the control group, had significantly fewer percutaneous transluminal coronary angioplasties (8 vs 14, p<0.050) and cardiac hospitalizations (23 vs 44, p<0.001).

Section Summary: Ornish Program for Reversing Heart Disease
One RCT was identified that evaluated the Ornish Program in patients diagnosed with heart disease, and compared it to usual care. This RCT, which included patients with coronary artery disease but no recent cardiac event, had mixed findings at 1 and 5 years. The trial had a small sample size for a cardiac trial (N=48), and only 35 patients were available for the 5-year follow-up. The Ornish Program is considered by CMS to be an intensive cardiac rehabilitation program, but the program described in this RCT might meet criteria for standard cardiac rehabilitation. No studies were identified that compared the Ornish Program with any other cardiac rehabilitation program.

Pritikin Program
No RCTs evaluating the Pritikin Program were identified. The published evidence on this program consists of case series, and only one of the case series (Barnard et al, 1983) included patients with heart disease. Other case series included patients without heart failure, eg, those with high cholesterol levels.) Sixty-four patients with documented coronary artery disease attended a 26-day residential treatment program between 1976 and 1977. During the program, patients were encouraged to walk for 30 to 45 minutes twice a day, learned how to prepare foods consistent with the Pritikin diet, and attended over 60 hours of group education classes. Serum samples were taken at baseline and at the end of the program. Patients were called in March 1980 for a follow-up interview and were asked to send in serum samples. At the 3- to 4-year follow-up, 12 (19%) of 64 patients had had bypass surgery and 4 patients had died. Fifty (81%) patients provided serum samples at follow-up and the mean cholesterol level (166 mg/dL, SD=5)
was significantly lower than the baseline value (220 mg/dL, SD=6). The trial was limited the lack of a control group, especially a group receiving “standard” outpatient cardiac rehabilitation, and long-term mortality outcomes were not reported.

Section Summary: Pritikin Program
No RCTs have evaluated the Pritikin program; we found 1 case series in patients with heart disease. Conclusions cannot be drawn from these series on the impact of intensive cardiac rehabilitation with the Pritikin program compared with standard outpatient cardiac rehabilitation.

SUMMARY OF EVIDENCE
For individuals who have diagnosed heart disease who receive outpatient cardiac rehabilitation, the evidence includes multiple randomized controlled trials (RCTs) and systematic reviews of these trials. Relevant outcomes are overall survival, disease-specific survival, symptoms, and morbid events. Meta-analyses of the available trials have found that cardiac rehabilitation improves health outcomes for select patients, particularly those with coronary heart disease. The available evidence has limitations, including lack of blinded outcome assessment, but, for the survival-related outcomes of interest, this limitation is less critical. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have diagnosed heart disease without a second event who receive repeat outpatient cardiac rehabilitation, the evidence includes no trials. Relevant outcomes are overall survival, disease-specific survival, symptoms, and morbid events. No studies were identified evaluating the effectiveness of repeat participation in a cardiac rehabilitation program. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have diagnosed heart disease who receive intensive cardiac rehabilitation with the Ornish Program for Reversing Heart Disease, the evidence includes 1 RCT and uncontrolled studies. Relevant outcomes are overall survival, disease-specific survival, symptoms, and morbid events. No RCTs have compared the Ornish Program to a “standard” cardiac rehabilitation program; 1 RCT compared it with usual care. The trial included patients with coronary artery disease and no recent cardiac events, and had mixed findings at 1 and 5 years. The trial had a small sample size for a cardiac trial (N=48), and only 35 patients were available for the 5-year follow-up. The Ornish Program is considered by the Centers for Medicare & Medicaid Services as an intensive cardiac rehabilitation program, but the program described in the RCT might meet criteria for standard cardiac rehabilitation. No studies were identified comparing the Ornish Program with any other cardiac rehabilitation program. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have diagnosed heart disease who receive intensive cardiac rehabilitation with the Pritikin Program, the evidence includes 1 case series. Relevant outcomes are overall survival, disease-specific survival, symptoms, and morbid events. Studies are needed that compare the impact of intensive cardiac rehabilitation between the Pritikin Program and standard outpatient cardiac rehabilitation programs. The evidence is insufficient to determine the effects of the technology on health outcomes.

PRACTICE GUIDELINES AND POSITION STATEMENTS
American College of Cardiology Foundation and the American Heart Association
In 2013, the American College of Cardiology Foundation and the American Heart Association published updated guidelines on the management of heart failure.2 These guidelines include the
following Class IIa recommendation related to cardiac rehabilitation (Level of Evidence: B): "Cardiac rehabilitation can be useful in clinically stable patients with HF [heart failure] to improve functional capacity, exercise duration, HRQOL [health-related quality of life], and mortality."

American College of Physicians et al
In 2012, the American College of Physicians, American College of Cardiology Foundation, American Heart Association/American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association and Society of Thoracic Surgeons published a joint guideline on management of stable ischemic heart disease. The guideline included the following statement on cardiac rehabilitation: "Medically supervised exercise programs (cardiac rehabilitation) and physician-directed, home-based programs are recommended for at-risk patients at first diagnosis."

AHA and American Association of Cardiovascular and Pulmonary Rehabilitation
In 2007, AHA and the American Association of Cardiovascular and Pulmonary Rehabilitation issued a consensus statement on the core components of cardiac rehabilitation programs. The core components included patient assessment before beginning the program, nutritional counseling, weight management, blood pressure management, lipid management, diabetes management, tobacco cessation, psychosocial management, physical activity counseling, and exercise training. Programs that only offer supervised exercise training are not considered cardiac rehabilitation. The guidelines specified the assessment, interventions, and expected outcomes for each of the core components. For example, symptom-limited exercise testing before exercise training was strongly recommended. The national guidelines did not specify the optimal overall length of programs or number or duration of sessions.

European Association of Cardiovascular Prevention and Rehabilitation
In 2010, Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation published a position paper on cardiac rehabilitation. Recommendations were based on a review of national guidelines from the U.S. and Europe. These recommendations state that components of a multidisciplinary cardiac rehabilitation program are "...patient assessment, physical activity counseling, exercise training, diet/nutritional counseling, weight control management, lipid management, blood pressure monitoring, smoking cessation, and psychosocial management."

The recommended criteria for adequate exercise training are:
- Mode: Continuous endurance e.g., walking, jogging, cycling, swimming, etc.
- Duration: At least 20-30 minutes (preferably 45-60 minutes)
- Frequency: Most days (at least 3 days per week and preferably 6-7 days per week)
- Intensity: 50-80% of peak oxygen consumption (close to anaerobic threshold) or of peak heart rate or 40-60% of heart rate reserve; 10/20-14/20 of the Borg Rating of Perceived Exertion.

The position paper did not address repeat participation in cardiac rehabilitation programs.

U.S. PREVENTIVE SERVICES TASK FORCE RECOMMENDATIONS
Not applicable.

ONGOING AND UNPUBLISHED CLINICAL TRIALS
Some currently unpublished trials that might influence this policy are listed in Table 1.
Table 1. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01822769</td>
<td>Cardiopulmonary Rehabilitation for Adolescents and Adults With Congenital Heart Disease</td>
<td>60</td>
<td>Dec 2017</td>
</tr>
<tr>
<td>NCT02619422</td>
<td>More Intensive Cardiac Rehabilitation Programs in Less Time (másPORmenos)</td>
<td>509</td>
<td>Mar 2018</td>
</tr>
<tr>
<td>NCT02984449</td>
<td>Preventive Heart Rehabilitation to Prevent Complications in Patients Undergoing Elective Open Heart Surgery (Heart-ROCQ)</td>
<td>350</td>
<td>Aug 2025</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

BENEFIT APPLICATION

Cardiac rehabilitation must be performed in a facility approved by Blue Cross and Blue Shield of Kansas.

CODING

The following codes for treatment and procedures applicable to this policy are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

CPT/HCPCS

- 93797 Physician services for outpatient cardiac rehabilitation; without continuous ECG monitoring (per session)
- 93798 Physician services for outpatient cardiac rehabilitation; with continuous ECG monitoring (per session)
- G0422 Intensive cardiac rehabilitation; with or without continuous ECG monitoring with exercise, per session
- G0423 Intensive cardiac rehabilitation; with or without continuous ECG monitoring; without exercise, per session

ICD-9 Diagnoses

- 410.00-410.92 Acute myocardial infarction (code range)
- 411.1 Intermediate coronary syndrome
- 412 Old myocardial infarction
- 413.9 Other and unspecified angina pectoris
- 428.0 Congestive heart failure, unspecified

ICD-10 Diagnoses (Effective October 1, 2015)

- I20.8 Other forms of angina pectoris
- I20.9 Angina pectoris, unspecified
- I21.01 ST elevation (STEMI) myocardial infarction involving left main coronary artery
- I21.02 ST elevation (STEMI) myocardial infarction involving left anterior descending coronary artery
- I21.09 ST elevation (STEMI) myocardial infarction involving other coronary artery of anterior wall
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I21.11</td>
<td>ST elevation (STEMI) myocardial infarction involving right coronary artery</td>
</tr>
<tr>
<td>I21.19</td>
<td>ST elevation (STEMI) myocardial infarction involving other coronary artery of inferior wall</td>
</tr>
<tr>
<td>I21.21</td>
<td>ST elevation (STEMI) myocardial infarction involving left circumflex coronary artery</td>
</tr>
<tr>
<td>I21.29</td>
<td>ST elevation (STEMI) myocardial infarction involving other sites</td>
</tr>
<tr>
<td>I21.3</td>
<td>ST elevation (STEMI) myocardial infarction of unspecified site</td>
</tr>
<tr>
<td>I21.4</td>
<td>Non-ST elevation (NSTEMI) myocardial infarction</td>
</tr>
<tr>
<td>I21.A1</td>
<td>Myocardial infarction type 2</td>
</tr>
<tr>
<td>I22.0</td>
<td>Subsequent ST elevation (STEMI) myocardial infarction of anterior wall</td>
</tr>
<tr>
<td>I22.1</td>
<td>Subsequent ST elevation (STEMI) myocardial infarction of inferior wall</td>
</tr>
<tr>
<td>I22.2</td>
<td>Subsequent non-ST elevation (NSTEMI) myocardial infarction</td>
</tr>
<tr>
<td>I22.8</td>
<td>Subsequent ST elevation (STEMI) myocardial infarction of other sites</td>
</tr>
<tr>
<td>I22.9</td>
<td>Subsequent ST elevation (STEMI) myocardial infarction of unspecified site</td>
</tr>
<tr>
<td>I25.110</td>
<td>Atherosclerotic heart disease of native coronary artery with unstable angina pectoris</td>
</tr>
<tr>
<td>I25.111</td>
<td>Atherosclerotic heart disease of native coronary artery with angina pectoris with documented spasm</td>
</tr>
<tr>
<td>I25.118</td>
<td>Atherosclerotic heart disease of native coronary artery with other forms of angina pectoris</td>
</tr>
<tr>
<td>I25.119</td>
<td>Atherosclerotic heart disease of native coronary artery with unspecified angina pectoris</td>
</tr>
<tr>
<td>I25.2</td>
<td>Old myocardial infarction</td>
</tr>
<tr>
<td>I25.700</td>
<td>Atherosclerosis of coronary artery bypass graft(s), unspecified, with unstable angina pectoris</td>
</tr>
<tr>
<td>I25.701</td>
<td>Atherosclerosis of coronary artery bypass graft(s), unspecified, with angina pectoris with documented spasm</td>
</tr>
<tr>
<td>I25.708</td>
<td>Atherosclerosis of coronary artery bypass graft(s), unspecified, with other forms of angina pectoris</td>
</tr>
<tr>
<td>I25.709</td>
<td>Atherosclerosis of coronary artery bypass graft(s), unspecified, with unspecified angina pectoris</td>
</tr>
<tr>
<td>I25.710</td>
<td>Atherosclerosis of autologous vein coronary artery bypass graft(s) with unstable angina pectoris</td>
</tr>
<tr>
<td>I25.711</td>
<td>Atherosclerosis of autologous vein coronary artery bypass graft(s) with angina pectoris with documented spasm</td>
</tr>
<tr>
<td>I25.718</td>
<td>Atherosclerosis of autologous vein coronary artery bypass graft(s) with other forms of angina pectoris</td>
</tr>
<tr>
<td>I25.719</td>
<td>Atherosclerosis of autologous vein coronary artery bypass graft(s) with unspecified angina pectoris</td>
</tr>
<tr>
<td>I25.720</td>
<td>Atherosclerosis of autologous artery coronary artery bypass graft(s) with unstable angina pectoris</td>
</tr>
<tr>
<td>I25.721</td>
<td>Atherosclerosis of autologous artery coronary artery bypass graft(s) with angina pectoris with documented spasm</td>
</tr>
<tr>
<td>I25.728</td>
<td>Atherosclerosis of autologous artery coronary artery bypass graft(s) with other forms of angina pectoris</td>
</tr>
<tr>
<td>I25.729</td>
<td>Atherosclerosis of autologous artery coronary artery bypass graft(s) with unspecified angina pectoris</td>
</tr>
<tr>
<td>I25.730</td>
<td>Atherosclerosis of nonautologous biological coronary artery bypass graft(s) with unstable angina pectoris</td>
</tr>
<tr>
<td>I25.731</td>
<td>Atherosclerosis of nonautologous biological coronary artery bypass graft(s) with angina pectoris with documented spasm</td>
</tr>
</tbody>
</table>
I25.738 Atherosclerosis of nonautologous biological coronary artery bypass graft(s) with other forms of angina pectoris
I25.739 Atherosclerosis of nonautologous biological coronary artery bypass graft(s) with unspecified angina pectoris
I25.750 Atherosclerosis of native coronary artery of transplanted heart with unstable angina
I25.751 Atherosclerosis of native coronary artery of transplanted heart with angina pectoris with documented spasm
I25.758 Atherosclerosis of native coronary artery of transplanted heart with other forms of angina pectoris
I25.759 Atherosclerosis of native coronary artery of transplanted heart with unspecified angina pectoris
I25.760 Atherosclerosis of bypass graft of coronary artery of transplanted heart with unstable angina
I25.761 Atherosclerosis of bypass graft of coronary artery of transplanted heart with angina pectoris with documented spasm
I25.768 Atherosclerosis of bypass graft of coronary artery of transplanted heart with other forms of angina pectoris
I25.769 Atherosclerosis of bypass graft of coronary artery of transplanted heart with unspecified angina pectoris
I25.790 Atherosclerosis of other coronary artery bypass graft(s) with unstable angina
I25.791 Atherosclerosis of other coronary artery bypass graft(s) with angina pectoris with documented spasm
I25.798 Atherosclerosis of other coronary artery bypass graft(s) with other forms of angina pectoris
I25.799 Atherosclerosis of other coronary artery bypass graft(s) with unspecified angina pectoris
I50.20 Unspecified systolic (congestive) heart failure
I50.21 Acute systolic (congestive) heart failure
I50.22 Chronic systolic (congestive) heart failure
I50.23 Acute on chronic systolic (congestive) heart failure
I50.30 Unspecified diastolic (congestive) heart failure
I50.31 Acute diastolic (congestive) heart failure
I50.32 Chronic diastolic (congestive) heart failure
I50.33 Acute on chronic diastolic (congestive) heart failure
I50.40 Unspecified combined systolic (congestive) and diastolic (congestive) heart failure
I50.41 Acute combined systolic (congestive) and diastolic (congestive) heart failure
I50.42 Chronic combined systolic (congestive) and diastolic (congestive) heart failure
I50.43 Acute on chronic combined systolic (congestive) and diastolic (congestive) heart failure
I50.810 Right heart failure, unspecified
I50.811 Acute right heart failure
I50.812 Chronic right heart failure
I50.813 Acute on chronic right heart failure
I50.814 Right heart failure due to left heart failure
I50.82 Biventricular heart failure
I50.83 High output heart failure
I50.84 End stage heart failure
I50.9 Heart failure, unspecified

Contains Public Information
REVISIONS

<table>
<thead>
<tr>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-17-2010</td>
<td>Policy added to the bcbsks.com web site.</td>
</tr>
</tbody>
</table>
| 09-24-2012 | Description section updated.
In the Policy section:
- In Item E, added "It is preferable that programs start within 90 days of the cardiac event and be completed within 6 months of the cardiac event."
Rationale section updated.
Reference section updated. |
| 12-11-2013 | Added Medical Policy and Coding Disclaimers.
Updated Description section.
In Policy section:
- In Item A, added #7, "Compensated heart failure".
Updated Rationale section.
In Coding section:
- Added ICD-10 Diagnosis codes *(Effective October 1, 2014)*
Updated Reference section. |
| 07-15-2014 | Description section updated
In Policy section:
- Added to A 7 "(Stable congestive heart failure with left ventricular ejection fraction of 35% or less and New York Heart Association (NYHA) class II to IV symptoms despite being on optimal heart failure therapy for at least 6 weeks)" to define compensated heart failure.
Revision section updated
References updated |
| 09-23-2015 | Title of policy changed from "Cardiac Rehabilitation Programs"
Updated Description section.
In Policy section:
- In Item A, removed "items and services" and "who have experienced one or more" and added "outpatient", "programs," "with a history", and "conditions and procedures", to read "Outpatient cardiac rehabilitation programs are considered medically necessary for patients with a history of the following conditions and procedures:"
- In Item A 1, added "(MI) (heart attack)", to read "An acute myocardial infarction (MI) (heart attack) within the preceding 12 months; OR"
- In Item A 2, added "graft (CABG)", to read "A coronary artery bypass graft (CABG) surgery; OR"
- In Item A 4, added "surgery" and removed "repair or replacement", to read "Heart valve surgery; OR"
- In Item A 6, added "OR", to read "A heart or heart-lung transplant; OR"
- In Item A 7, removed "(Stable congestive heart failure with left ventricular ejection fraction of 35% or less and New York Heart Association (NYHA) class II to IV symptoms despite being on optimal heart failure therapy for at least 6 weeks)"
- In Item B 2, removed ", including education, counseling, and behavioral intervention at least once during the program, tailored to patients' individual needs", to read "Cardiac risk modification"
- In Item B 5, removed "for each patient", to read "An individualized treatment plan detailing how components are utilized."
Updated Rationale section.
In Coding section:
- Removed bullet stating "A single initial visit with the physician for referral to a program may be allowed under CPT code 99215."
Updated References section. |
REFERENCES

Other References
1. Blue Cross and Blue Shield of Kansas Cardiology Liaison Committee, April 2010; May 2014; May 2015; July 2016.